

-Baleen: ML Admission & **Prefetching for Flash Caches**

Daniel L.-K. Wong

wonglkd@cmu.edu

Hao Wu⁺, Carson Molder[§], Sathya Gunasekar⁺, Jimmy Lu⁺, Snehal Khandkar⁺ Abhinav Sharma[†], Daniel S. Berger[‡], Nathan Beckmann, Gregory R. Ganger [†]Meta, [‡]Microsoft/UW, [§]UT Austin

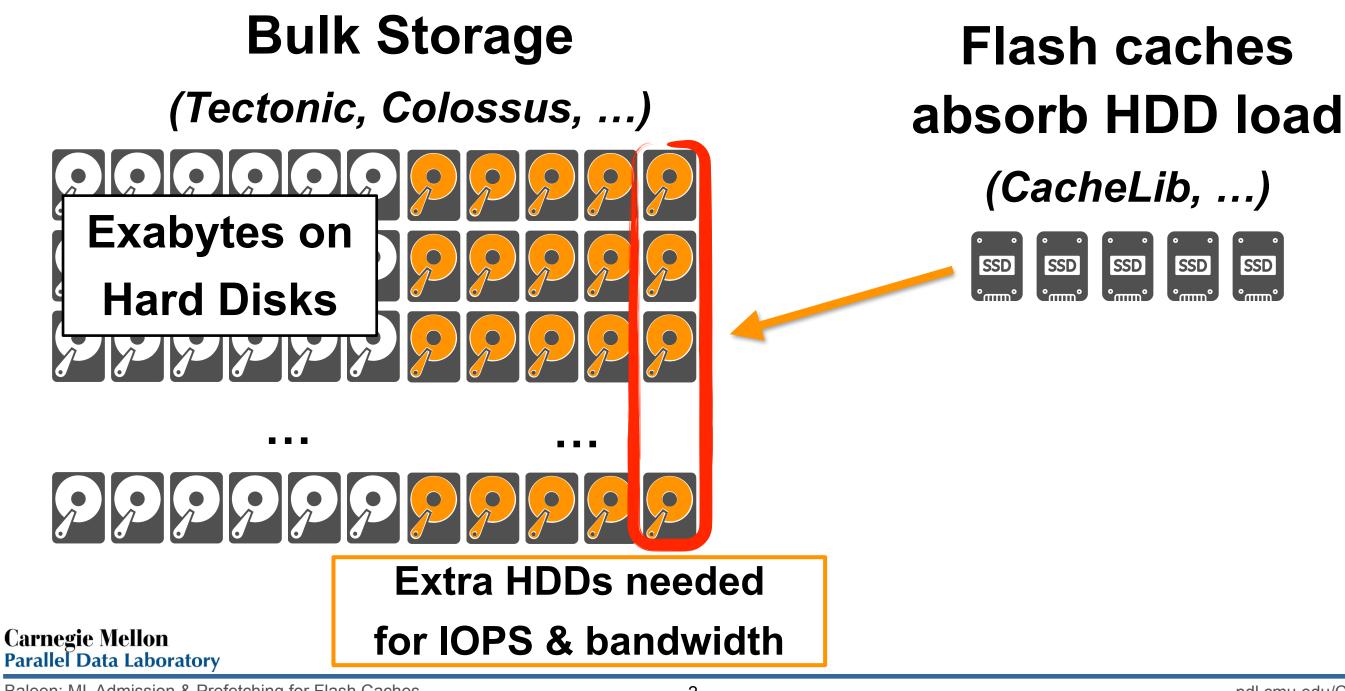
PARALLEL DATA LABORATORY

Carnegie Mellon University

Carnegie Mellon Parallel Data Laboratory

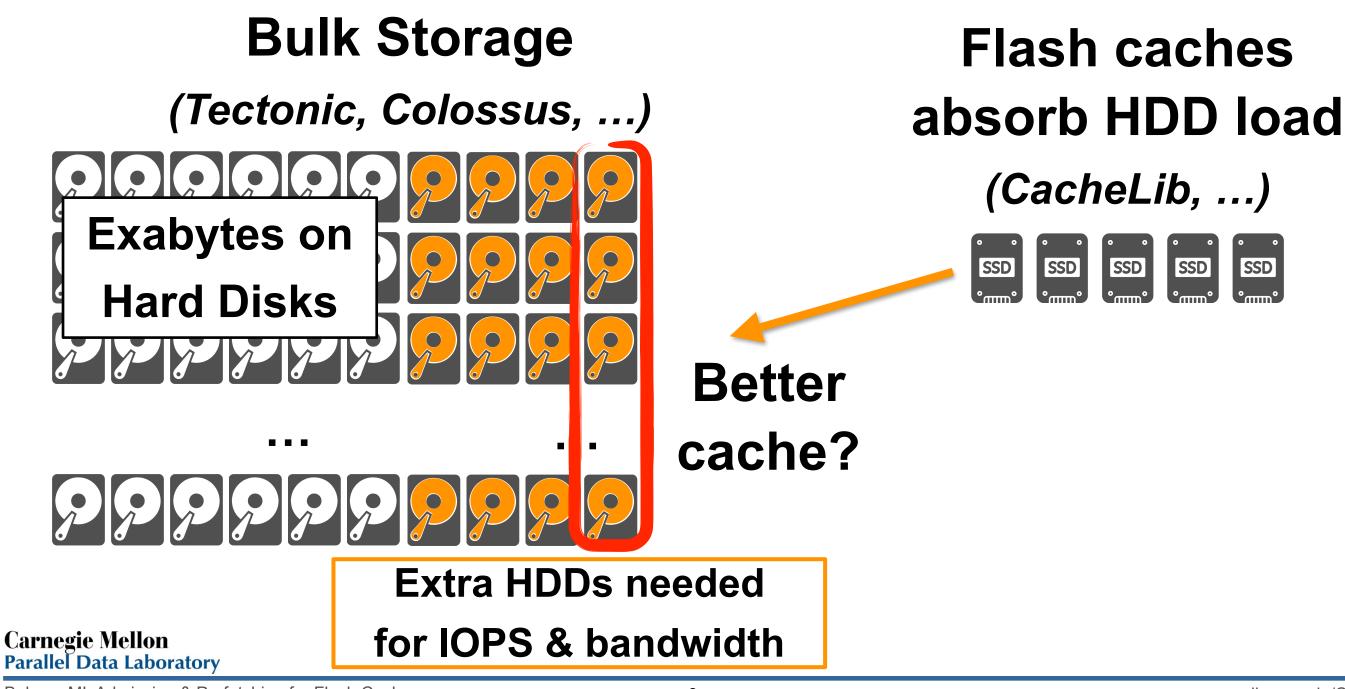
Center for Coastal Studies

Bulk storage systems depend on flash caches



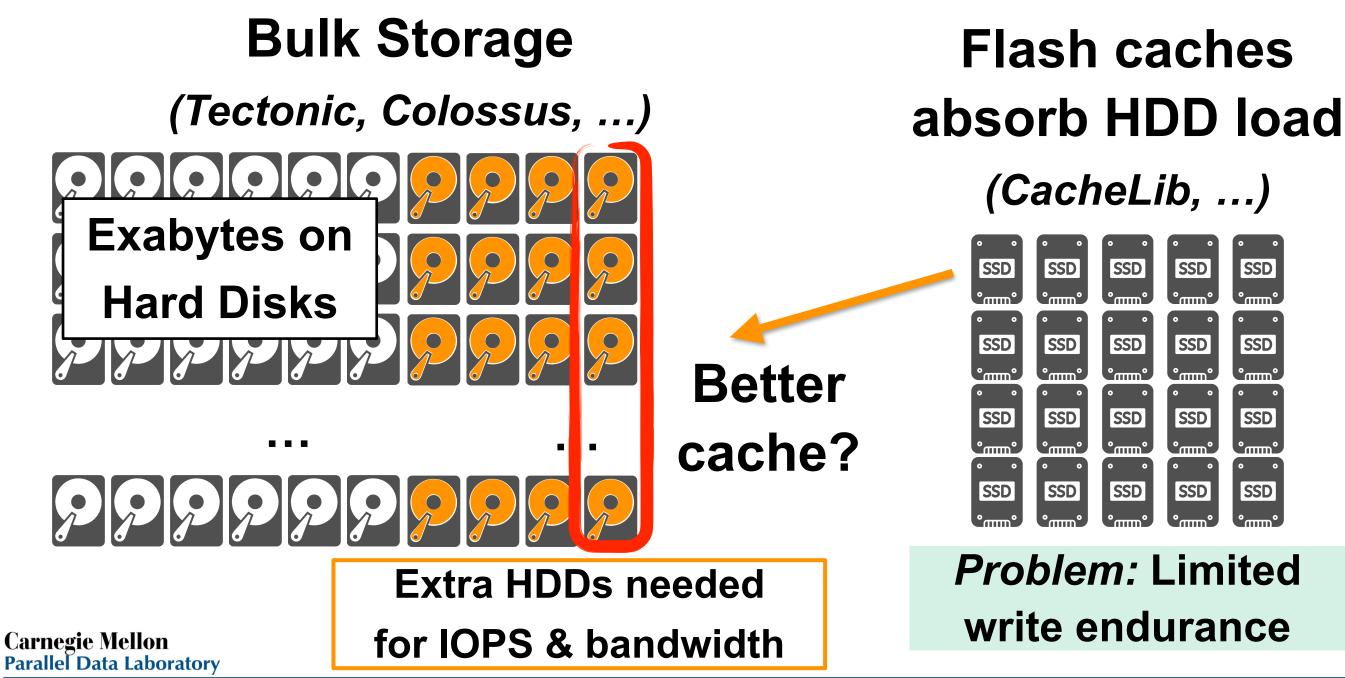
SSD SSD

Better flash caches save more HDDs



SSD SSD

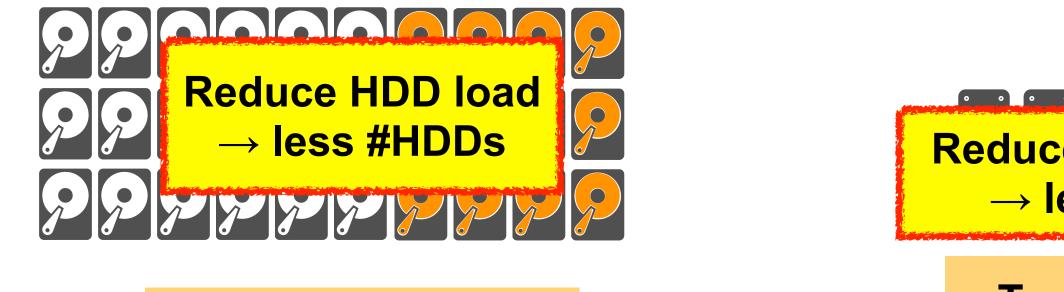
Flash caches are write-heavy



Baleen: ML Admission & Prefetching for Flash Caches

Costs dominated by #HDDs & #SSDs

Baleen reduces costs by 17% on 7 traces



Even more important with denser storage!

Carnegie Parallel Data Laboratory

Baleen: ML Admission & Prefetching for Flash Caches

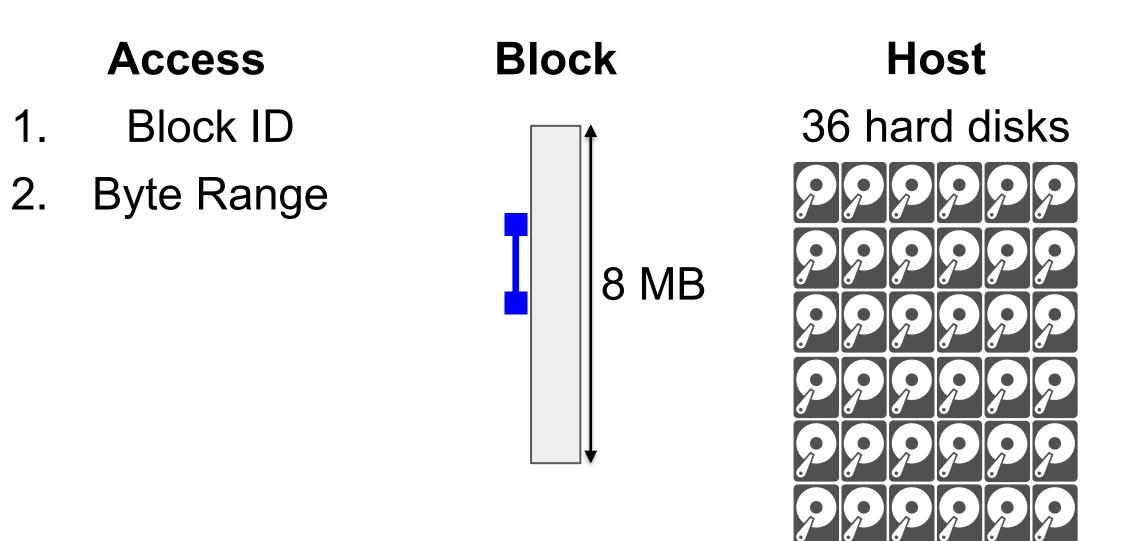
Trend: Lower flash endurance

How does Baleen reduce costs by 17%?

- 3 key ideas
 - Exploit a new cache residency model (episodes)
 - Train ML admission & ML prefetching policies
 - Optimize an end-to-end metric (disk-head time)
- Why ML over heuristics?
 - More savings, more adaptive

Baleen: ML Admission & Prefetching for Flash Caches

Bulk storage clients access byte ranges within blocks

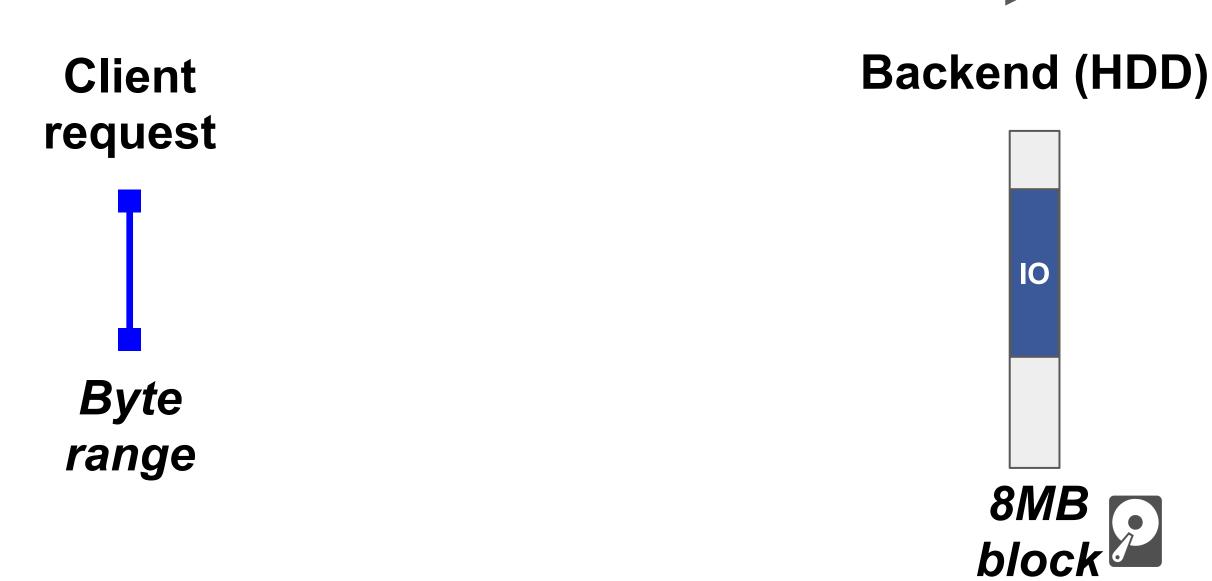


Carnegie Mellon Parallel Data Laboratory

Baleen: ML Admission & Prefetching for Flash Caches

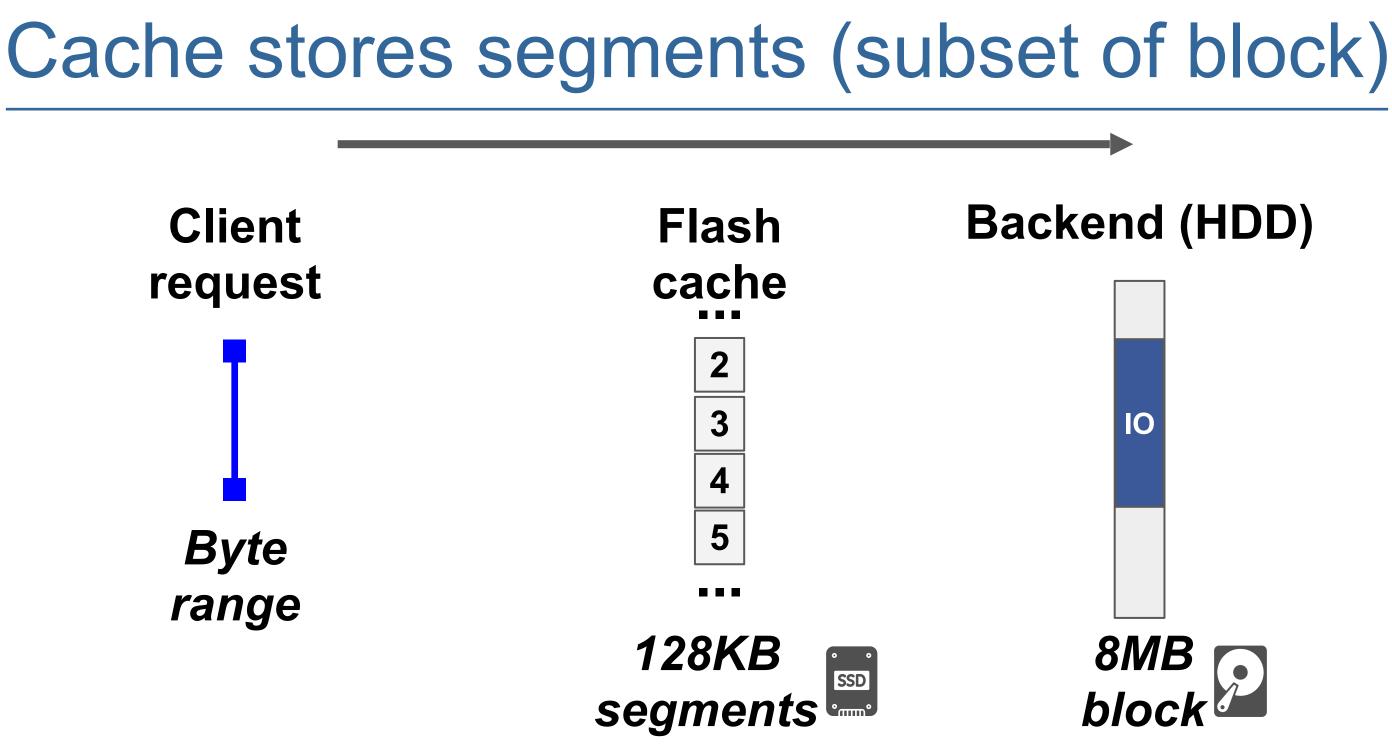
Cluster Data center 1000s of hosts

Fetching bytes from backend causes disk IO



Carnegie Mellon Parallel Data Laboratory

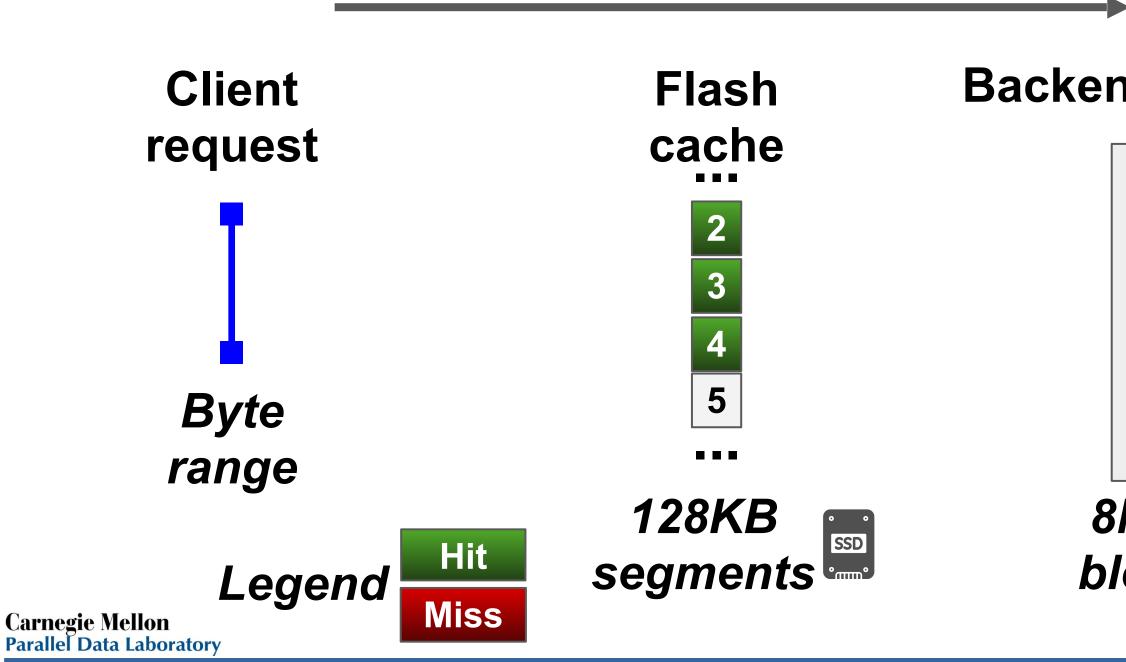
Baleen: ML Admission & Prefetching for Flash Caches



Carnegie Mellon

Parallel Data Laboratory

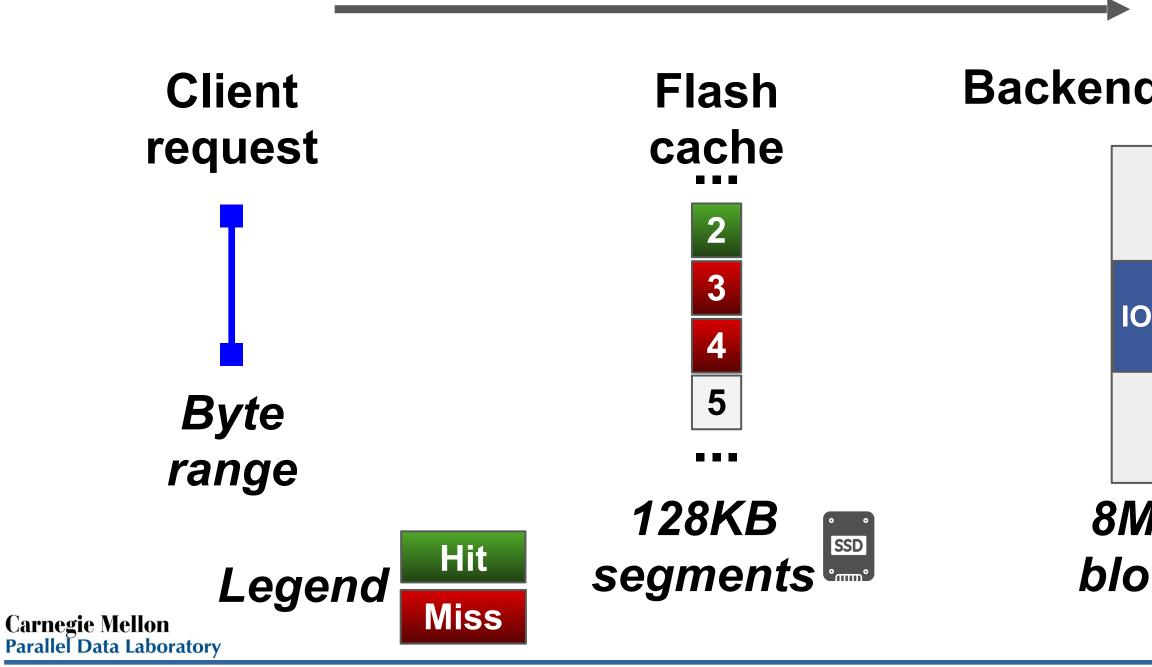
Cache hits save disk IO



Baleen: ML Admission & Prefetching for Flash Caches

Backend (HDD)

Cache miss causes disk IO



Baleen: ML Admission & Prefetching for Flash Caches

Backend (HDD)

Decompose flash caching into 3 decisions

Goal: Reduce HDD load without excessive flash writes

Policy Decisions:

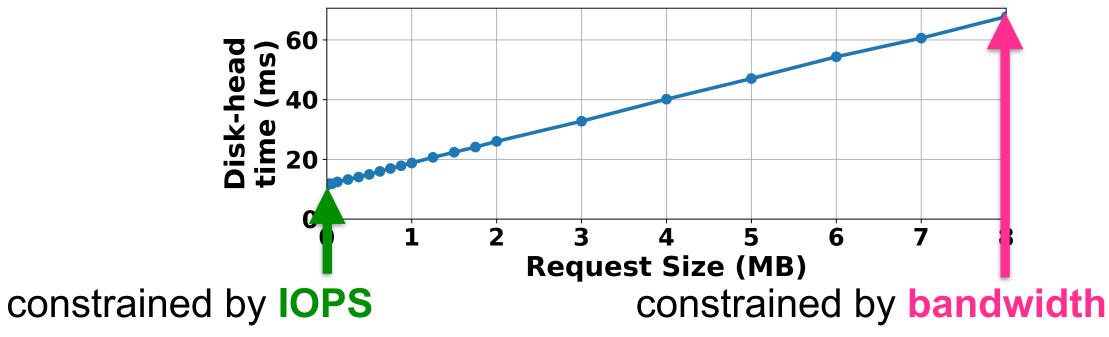
Carnegie Mellon Parallel Data Laboratory

Baleen: ML Admission & Prefetching for Flash Caches

Flash cache

Our metric: Disk-head time (DT)

- Q: Why DT instead of miss rates?
 - A: Variable size IOs (reducing #IOs & Size of IOs both important)
 - Using only **IO hit rate** or **byte miss rate** is an easy misstep (we did!) ullet
- DT = Positioning time + Read time



Intuition: DT is weighted sum of **#IOs** & **#Bytes**

Design Episodes model

Carnegie Mellon Parallel Data Laboratory

Baleen: ML Admission & Prefetching for Flash Caches

ML for caching not straightforward

Typical supervised learning

• e.g., "Is this picture a cat?"

ML for Caching

- Data: trace of accesses
- Multiple related decisions: Admit now? Later? Never?
 - Depend on AND affect cache contents, future decisions
- Tend to overfit on easy decisions
- Underfit on examples at margin that distinguish policies

Training on accesses non-trivial

15

Parallel Data Laboratory Baleen: ML Admission & Prefetching for Flash Caches

Carnegie Mellon

What is an episode?

Episode:

Group of accesses corresponding to the block's residency in flash if you admitted it on the 1st access

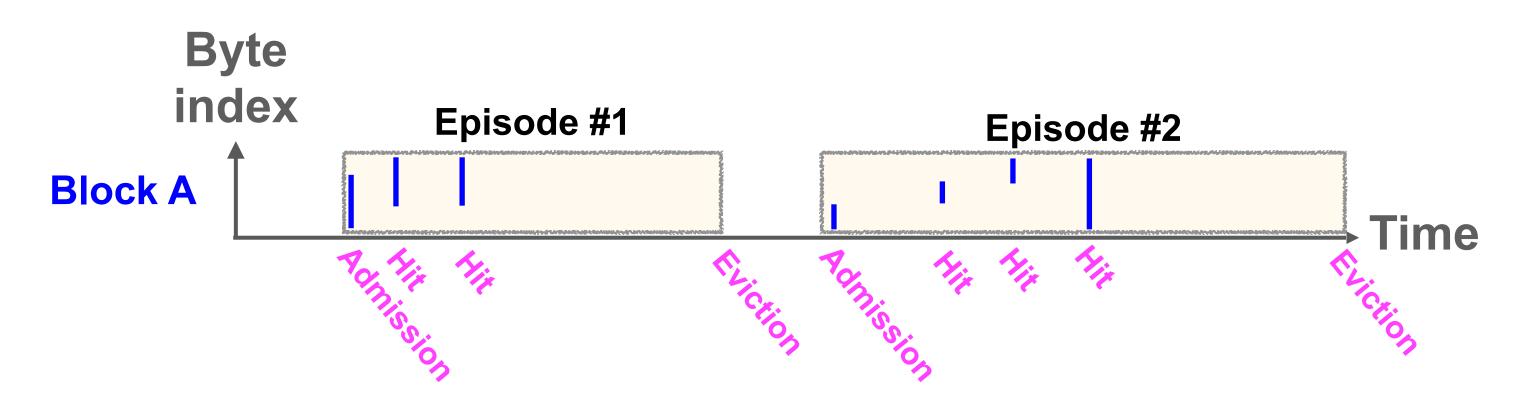
Carnegie Mellon Parallel Data Laboratory

Baleen: ML Admission & Prefetching for Flash Caches

Why use episodes to train ML?

- Right granularity
 - Focus on <u>first</u> access instead of all accesses
 - Policies see misses, not accesses
- Right examples
 - Avoid overfitting on popular blocks with many accesses but only 1 miss
- Right labels
 - Costs & benefits defined on admission to eviction

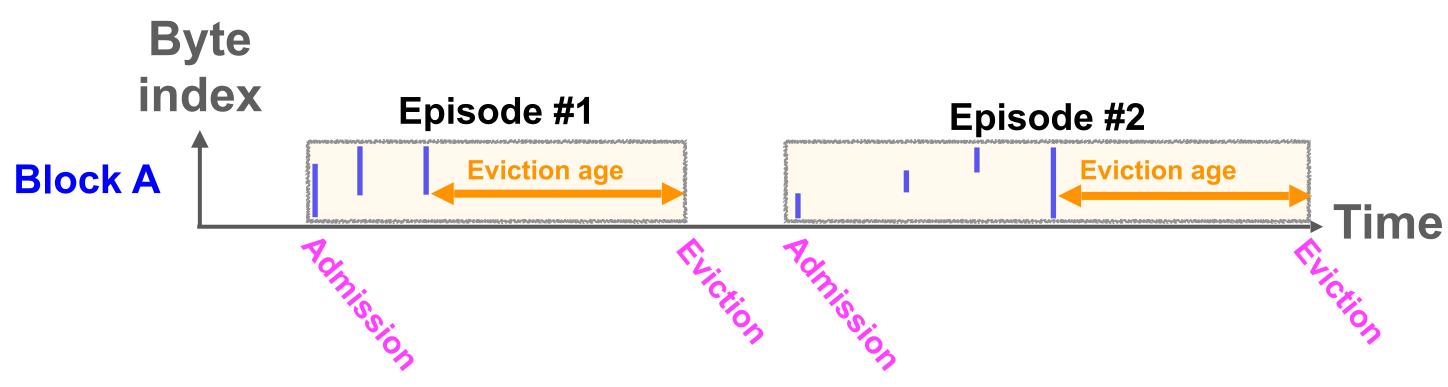
Episodes: from admission to eviction



Carnegie Mellon Parallel Data Laboratory

Baleen: ML Admission & Prefetching for Flash Caches

How to know when eviction happens?

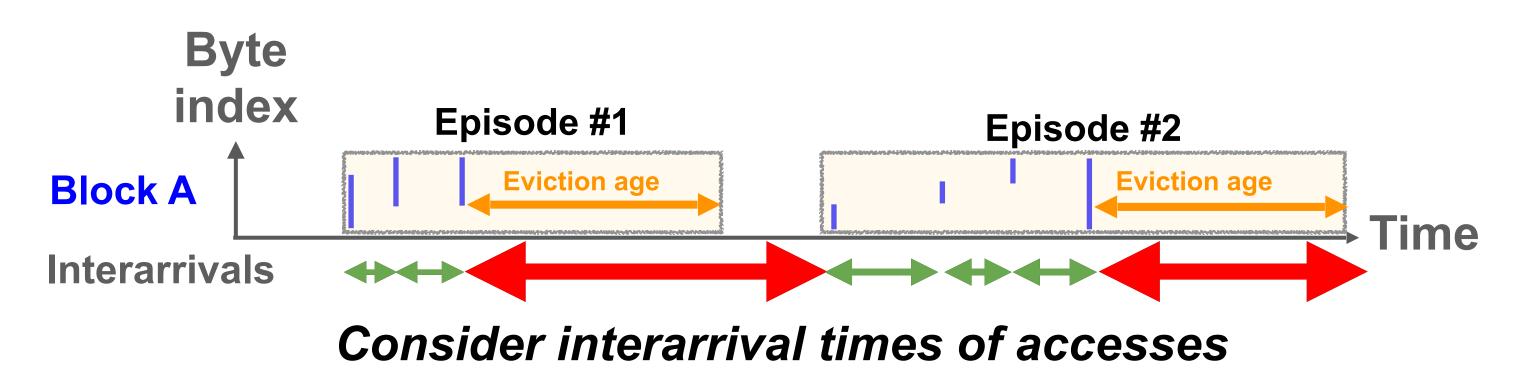


How: model LRU cache state with assumed eviction age

Carnegie Mellon Parallel Data Laboratory

Baleen: ML Admission & Prefetching for Flash Caches

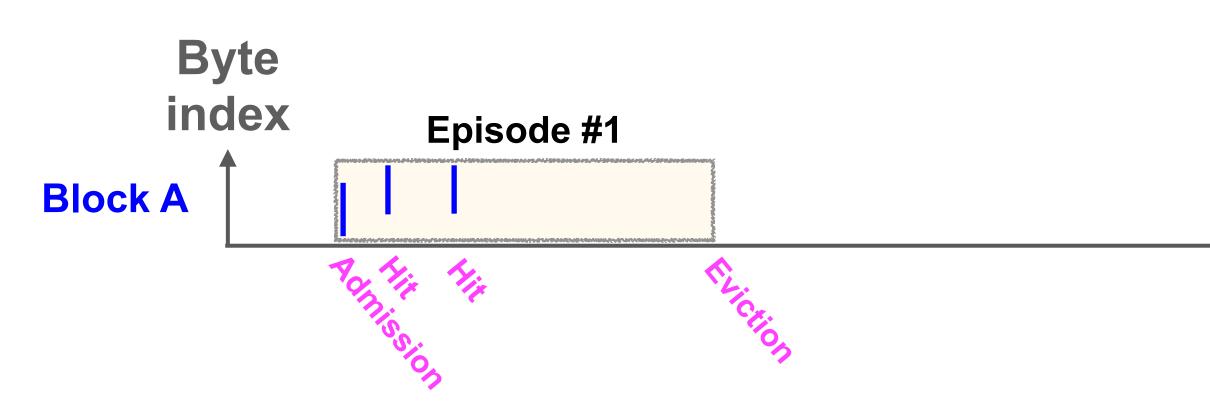
How episodes are generated



Split into episodes when interarrival > eviction age

Baleen: ML Admission & Prefetching for Flash Caches

Focusing on Episode 1...

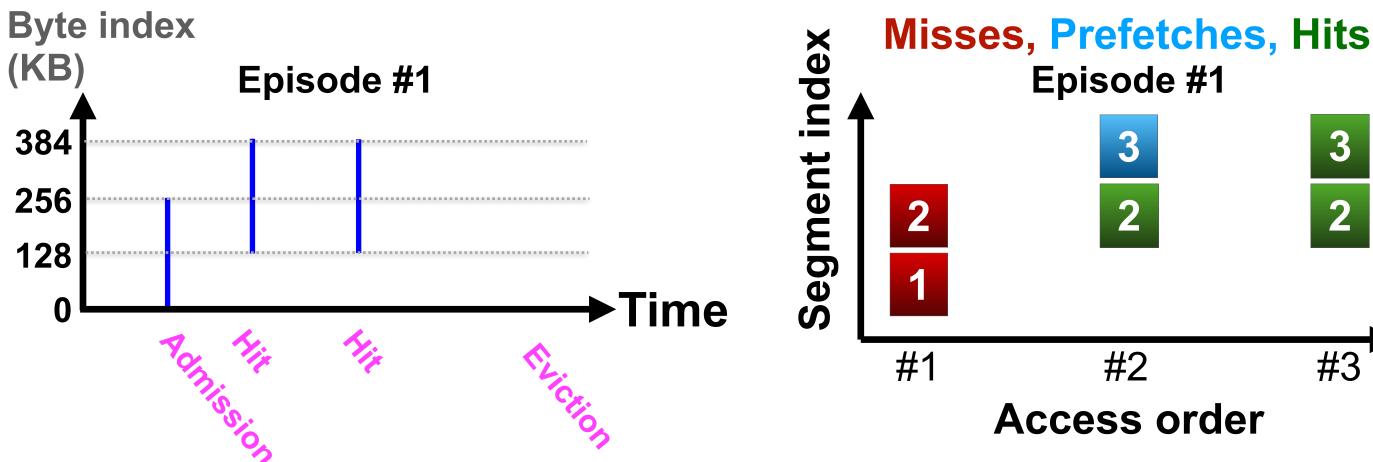


Carnegie Mellon Parallel Data Laboratory

Baleen: ML Admission & Prefetching for Flash Caches

→ Time

Reason about episodes instead of accesses



Carnegie Mellon Parallel Data Laboratory

Benefits & costs defined on episodes

Episode #1

Misses, Prefetches, Hits

Design Using episode-based policies to answer "What does good look like?"

Carnegie Mellon Parallel Data Laboratory

Baleen: ML Admission & Prefetching for Flash Caches

Admission: Baleen learns from episode-based OPT

OPT (approx. optimal) admits highest scoring episodes

$$Score(Ep) = \frac{DTSaved(Ep)}{FlashWrites(Ep)} = \frac{27 \text{ ms}}{3 \text{ flash writes}} I$$

OPT emits binary labels based on flash write budget

Yes if Score(*Ep*) > Cutoff_{TargetFlashWriteRate}

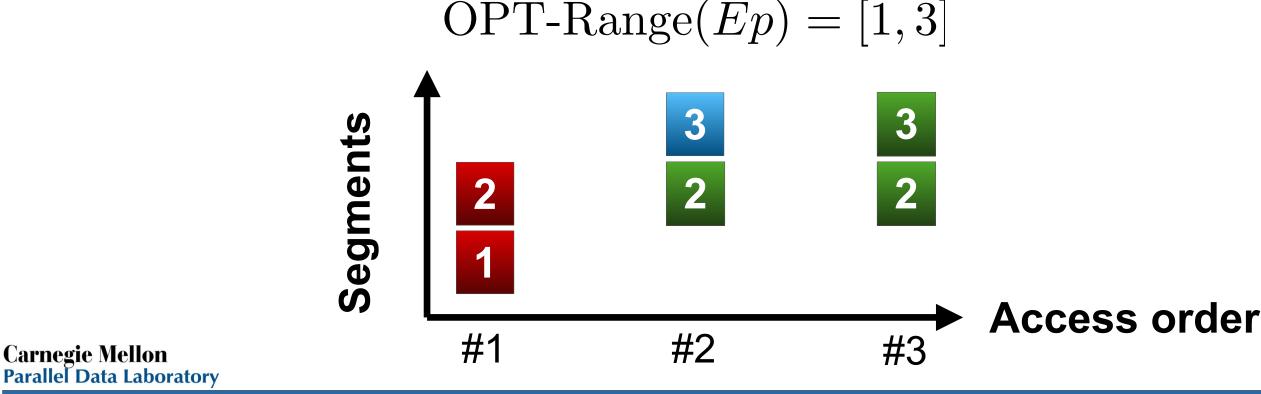
Baleen imitates OPT admission

Baleen: ML Admission & Prefetching for Flash Caches

Episode #1

Baleen's ML-Range learns what to prefetch

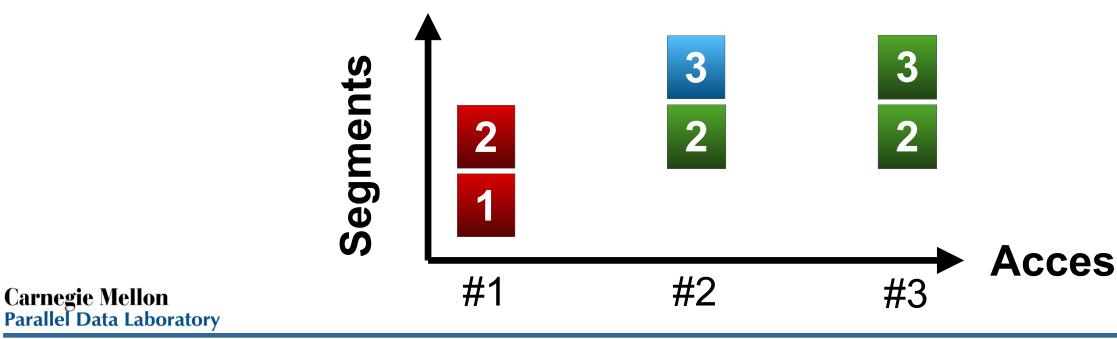
- What range to prefetch
 - OPT-Range Start: lowest segment
 - OPT-Range End: highest segment
- ML-Range is trained on OPT-Range



Carnegie Mellon

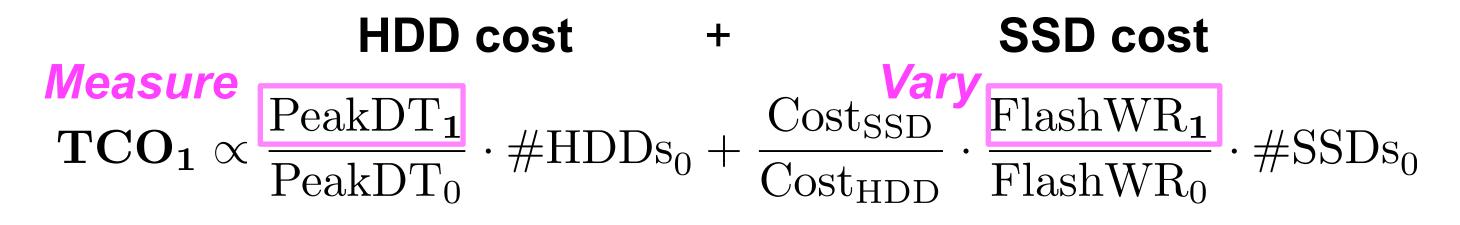
Baleen's ML-When learns when to prefetch

- When to prefetch
 - Bad prefetching hurts: wasted DT & cache space
 - Prefetch only when confident of benefits
 - **ML-When**: Yes if PrefetchBenefit(Ep) > ϵ



Access order

Q: How to balance #HDD against #SSDs?



Baleen-TCO picks optimal flash write rate

for each workload

Carnegie Mellon Parallel Data Laboratory *TCO function based on Google's CacheSack [Yang23]

Baleen: ML Admission & Prefetching for Flash Caches

Evaluation

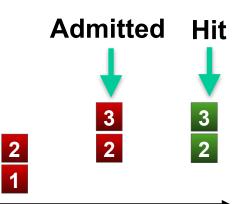
- Production workloads from Meta's Tectonic
 - 7 clusters from 3 years (2019, 2021, 2023)
 - Each serves 1-10 tenants, e.g., data warehouse
 - Each tenant serves 100s of applications
- More details on Tectonic in Pan et al (FAST 2021)
- Traces & simulator code released

Baleen: ML Admission & Prefetching for Flash Caches

Baseline admission policies

- CoinFlip: flip a coin for each IO
 - Simplest, requires no state
- RejectX (e.g., X=1: accept segment after 1 reject)
 - Used by Meta, Google as baseline
 - 2nd access is always a miss
- CacheLib-ML
 - Used by Meta in production for 3 years
 - Trained on accesses, not episodes

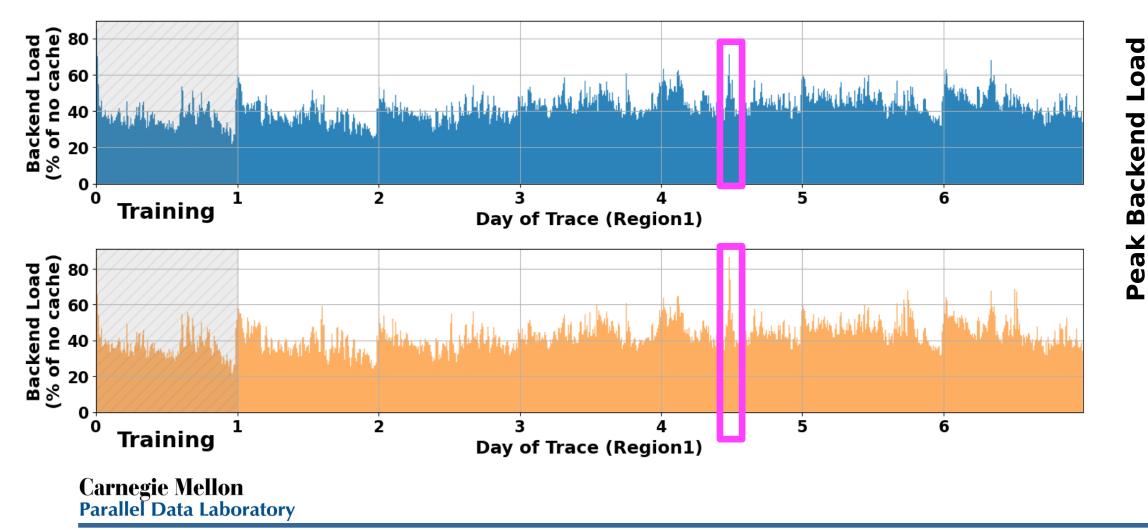
Segments



Access order **Misses**, Hits

Minimize peak backend load to minimize cost

- We train (offline) on Day 1 and evaluate on Day 2-7
- We compare policies' Peak DT (as a % of no caching)



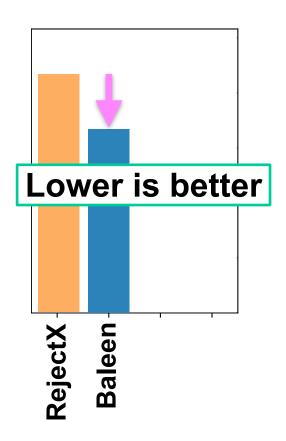
Baleen: ML Admission & Prefetching for Flash Caches

Load

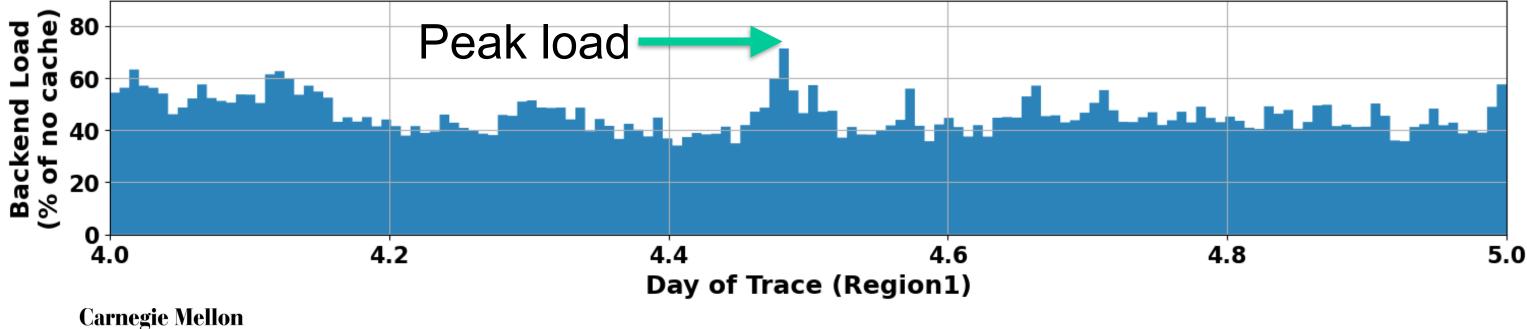
cache

of no

%)



Reduce peak load to lower total cost

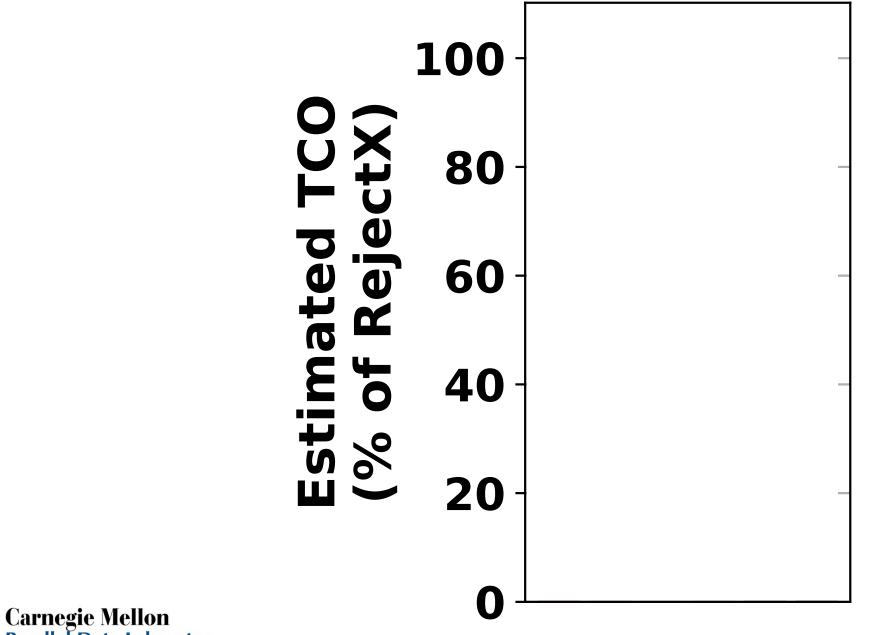


Parallel Data Laboratory

Baleen: ML Admission & Prefetching for Flash Caches

Lower TCO Total Cost of Ownership dominated by media costs

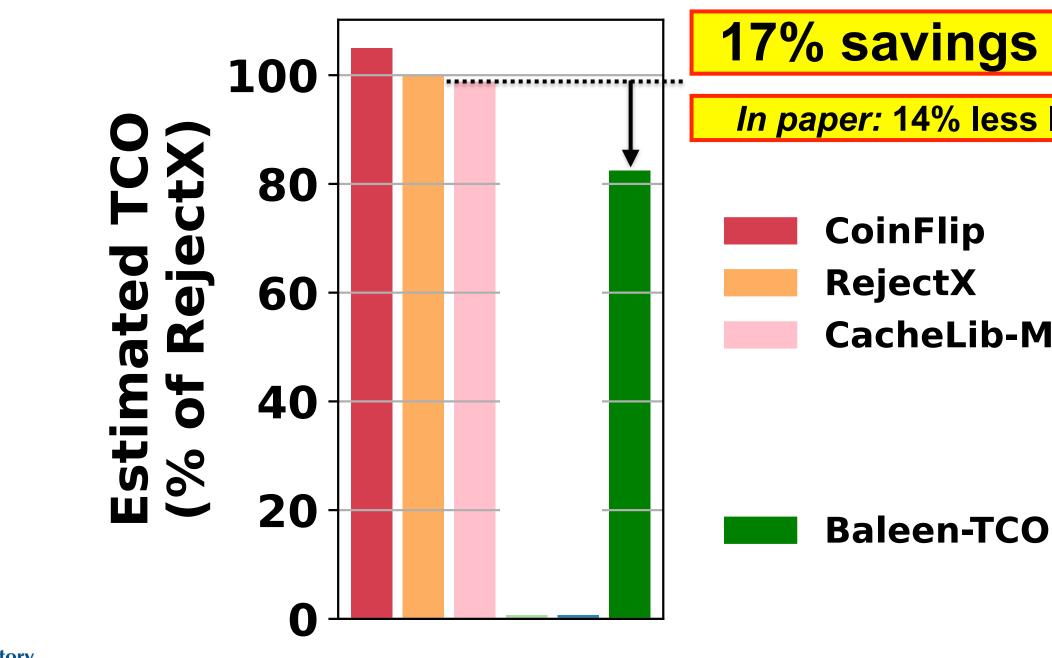
Baleen saves most cost



Parallel Data Laboratory

Baleen: ML Admission & Prefetching for Flash Caches

Baleen saves most cost



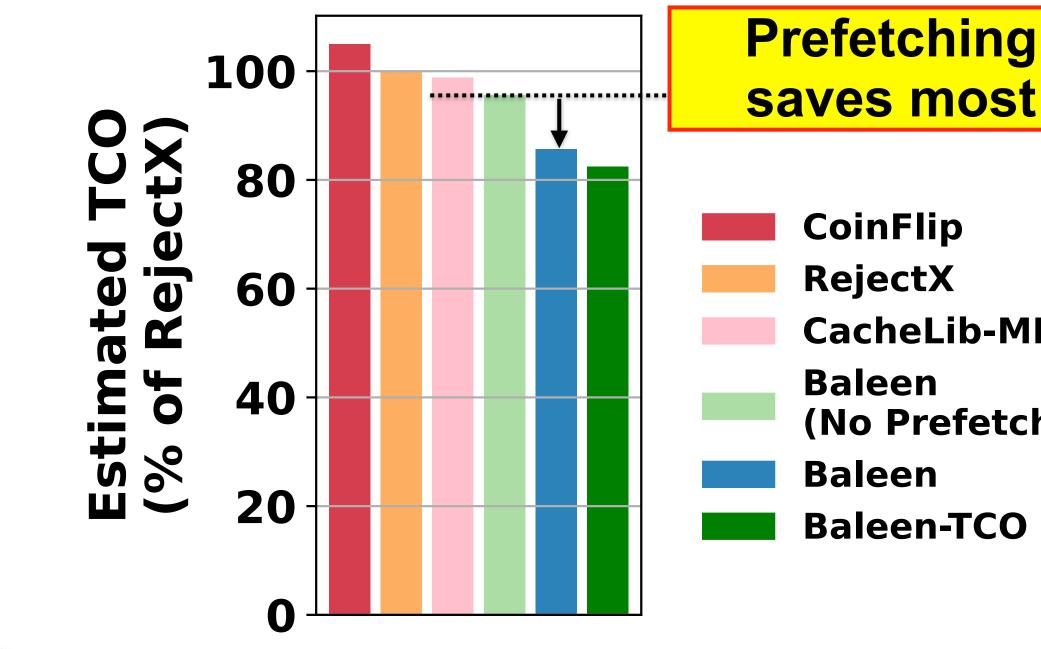
Carnegie Mellon Parallel Data Laboratory

Baleen: ML Admission & Prefetching for Flash Caches

17% savings in TCO *In paper:* 14% less IO misses

CacheLib-ML

Prefetching accounts for most benefit



Carnegie Mellon Parallel Data Laboratory

CacheLib-ML (No Prefetch)

Prefetching depends on good admission decisions

- Choice of admission policy matters
 - ML prefetching makes admission baselines worse
- Even with ML admission, 2 models required
 - ML-Range to know what to prefetch
 - ML-When to select when to prefetch

Baleen: ML Admission & Prefetching for Flash Caches

- Baleen reduces cost by 17%
- Episodes guide ML training
- **Optimize for Disk-head Time metric**
- Smart admission & prefetching
 - ML-Range predicts what to prefetch
 - ML-When estimates confidence in ML-Range
- Ongoing work: workload drift mitigation
 - Seeking longer traces with features! (>1 week)

wonglkd@cmu.edu / www.cs.cmu.edu/~dlwong

Carnegie Mellon

Parallel Data Laboratory

Traces & code pdl.cmu.edu/CILES

Dr Rose

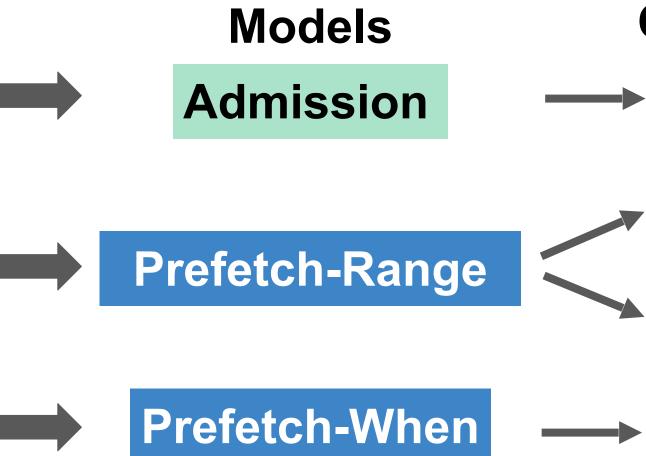
Backup slides

- Benefits of episodes
- What features are used?
- What if we use more complex models?
- What if we vary cache size?
- Architecture
- What workloads?

Model Features

Features

- Namespace
- User
- Temp. / Perm.
- IO start, end
- Hourly #accesses (last 6)



Carnegie Mellon Parallel Data Laboratory

Output Y/N start end Y/N

Overhead

- Limiting factor: latency of a miss going to disk
 - IO: 13 to 56 ms
- Training: 1-5 mins
- Inference latency: ~30µs per inference
 - 4 inferences per access
- Metadata: <1kB per 128kB segment (<1%)

Baleen: ML Admission & Prefetching for Flash Caches

What about write amplification?

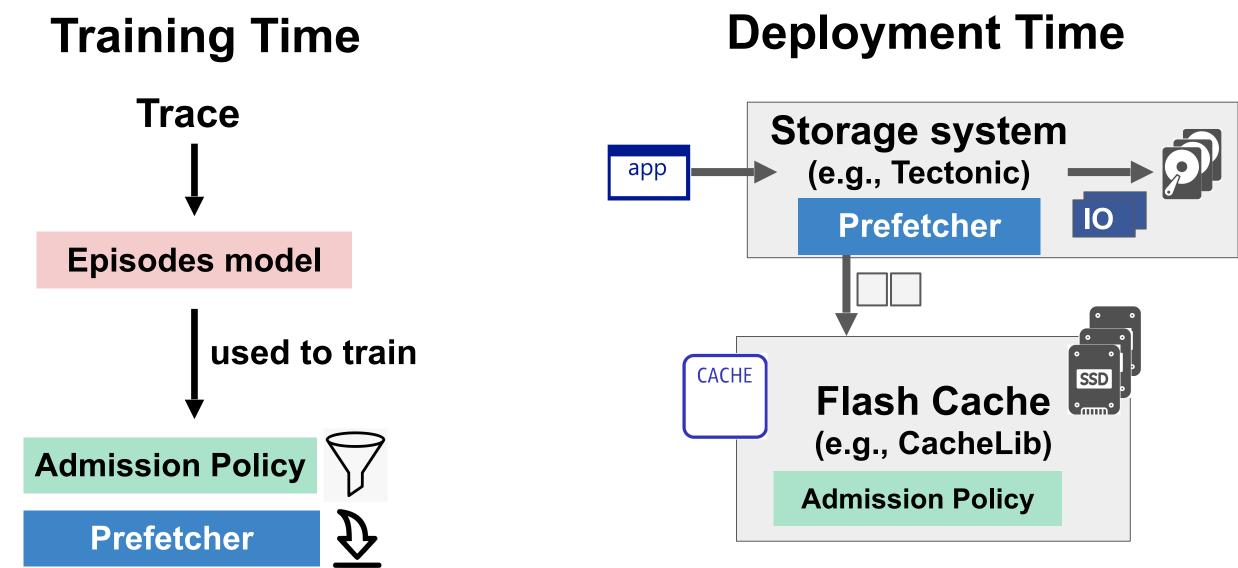
- Baleen focuses on larger items (~1MB)
 - Focus on reducing the long-term flash write rate
 - Minimum flash write: 128KB (a segment)
- Kangaroo focuses on small objects
- How you would use this in production
 - CacheLib with a small object cache (Kangaroo) and large object cache (Baleen)

Why DT matters: example

- Same flash writes, same number of IOs saved
- Right saves more DT (and thus disk load)

Carnegie Mellon Parallel Data Laboratory

Overall Architecture



Carnegie Mellon Parallel Data Laboratory

Online Baleen

- Keeping track of information needed to score episode
 - Admissions & evictions (to know boundaries)

$$Score(Ep) = \frac{DTSaved(Ep)}{FlashWrites(Ep)}$$

• Determine score cut-off dynamically

Score(*Ep*) > DynamicCutoffTargetFlashWriteRate

Baleen: ML Admission & Prefetching for Flash Caches

re episode ies)

Why we use GBMs



Gradient-Boosting Machines (decision trees)

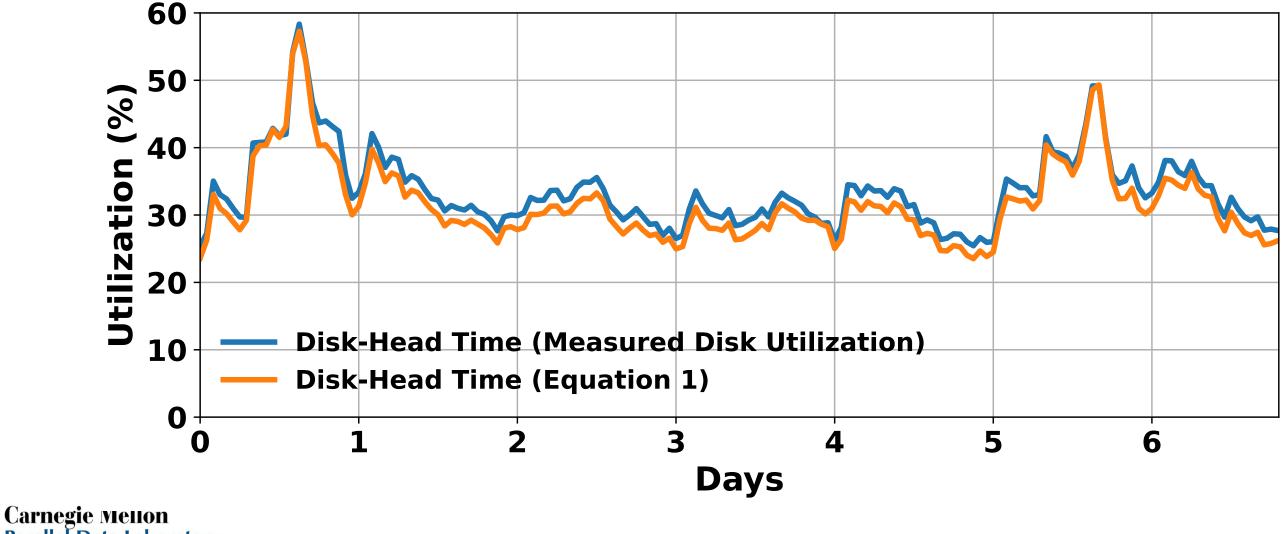
- Accuracy
 - On par with our attempt at a Cache Transformer
- Robustness
- Low inference overhead
 - <1% increase in overall CPU usage

GBM performs as well as Transformer

Carnegie Mellon Parallel Data Laboratory

Calculated DT matches measured DT

DT = Seek time x #IOs + Read time x #Bytes (Eq 1)

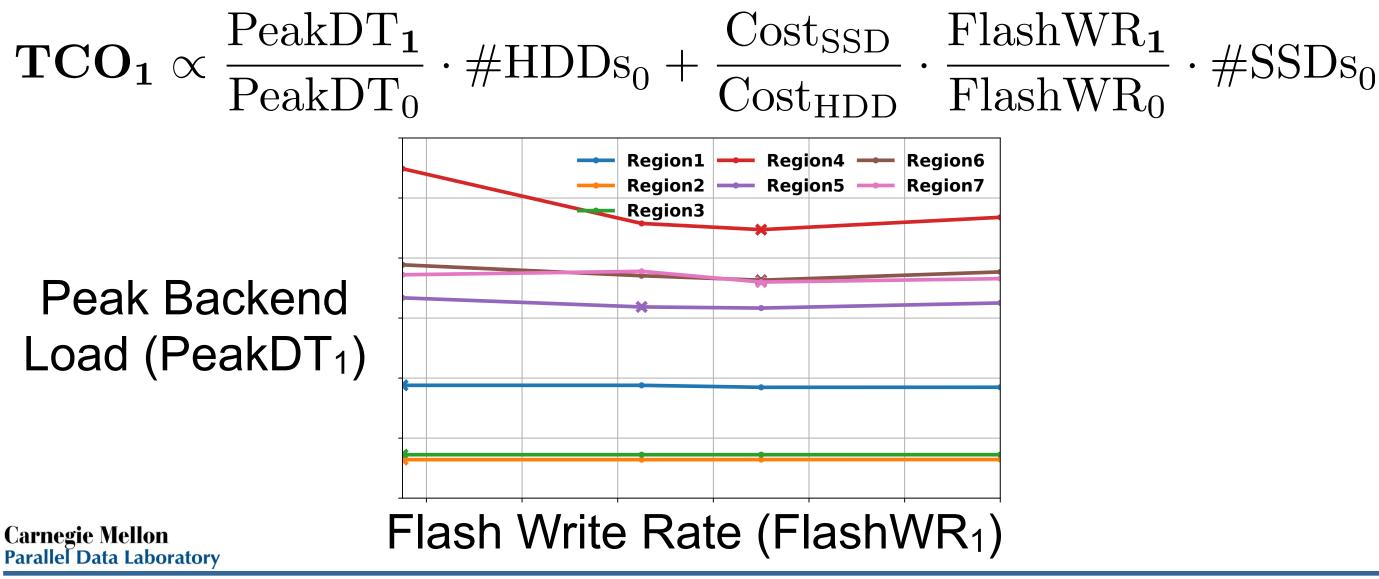


Parallel Data Laboratory

pdl.cmu.edu/CILES 2.1.2 Background – Measure DT

Baleen-TCO

Picks the optimal flash write rate to minimize 'TCO'



Baleen: ML Admission & Prefetching for Flash Caches