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…

Exabytes on 
Hard Disks

Bulk storage systems depend on flash caches

2

Bulk Storage 
(Tectonic, Colossus, …)

…

Flash caches 
absorb HDD load 

(CacheLib, …)

Extra HDDs needed 
for IOPS & bandwidth
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…

Exabytes on 
Hard Disks

Better flash caches save more HDDs
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Bulk Storage 
(Tectonic, Colossus, …)

…

Flash caches 
absorb HDD load 

(CacheLib, …)

Better 
cache?

Extra HDDs needed 
for IOPS & bandwidth
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…

Exabytes on 
Hard Disks

Flash caches are write-heavy
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Bulk Storage 
(Tectonic, Colossus, …)

…

Flash caches 
absorb HDD load 

(CacheLib, …)

Better 
cache?

Extra HDDs needed 
for IOPS & bandwidth

Problem: Limited 
write endurance
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…

Costs dominated by #HDDs & #SSDs
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…

Reduce HDD load 
→ less #HDDs Reduce flash writes 

→ less #SSDs

Baleen reduces costs by 17% on 7 traces 

Even more important with denser storage!

Trend: Less IOs/TB
Trend: Lower 

flash endurance 
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How does Baleen reduce costs by 17%?
• 3 key ideas 

• Exploit a new cache residency model (episodes) 

• Train ML admission & ML prefetching policies 

• Optimize an end-to-end metric (disk-head time) 

• Why ML over heuristics? 

• More savings, more adaptive

6
3. Baleen
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Cluster 
Data center 

1000s of hosts

Host 
36 hard disks

Block Access 
1. Block ID 
2. Byte Range

8 MB

Background – Bulk storage systems in data centers

Bulk storage clients access byte ranges within blocks
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Fetching bytes from backend causes disk IO
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Client 
request

8MB 
block

Byte 
range

Backend (HDD)

IO
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Cache stores segments (subset of block)
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Cache hits save disk IO
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Cache miss causes disk IO
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Decompose flash caching into 3 decisions

12
2.1 Background – Bulk storage systems in data centers

Flash cache
...

...

3
4
5

2

Policy Decisions:

5(b) Prefetch?

3 4(a) Admit misses?

(c) When to evict?

Goal: Reduce HDD load without excessive flash writes

Baleen

LRU

Baleen
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• DT = Positioning time + Read time

Our metric: Disk-head time (DT)
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constrained by IOPS constrained by bandwidth

• Intuition: DT is weighted sum of #IOs & #Bytes
2.1.1 Background – Bulk storage limited by DT

• Q: Why DT instead of miss rates? 
• A: Variable size IOs (reducing #IOs & Size of IOs both important) 
• Using only IO hit rate or byte miss rate is an easy misstep (we did!)
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Design 
Episodes model

14
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ML for caching not straightforward

15

Typical supervised learning 
• e.g., “Is this picture a cat?” 
ML for Caching 
• Data: trace of accesses 
• Multiple related decisions: Admit now? Later? Never? 

• Depend on AND affect cache contents, future decisions 
• Tend to overfit on easy decisions 
• Underfit on examples at margin that distinguish policies

Training on accesses non-trivial
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What is an episode?

16

Episode: 
Group of accesses corresponding to 

the block’s residency in flash 
if you admitted it on the 1st access

3.1.1 Baleen – Episodes
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• Right granularity 
• Focus on first access instead of all accesses 
• Policies see misses, not accesses 

• Right examples 
• Avoid overfitting on popular blocks with many 

accesses but only 1 miss 
• Right labels 

• Costs & benefits defined on admission to eviction

Why use episodes to train ML?

17
3.1.1 Baleen – Episodes
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Episode #2Episode #1

Episodes: from admission to eviction

3.1.1 Baleen – Episodes

Block A
Time

Byte 
index

Admission

Eviction
Admission

Eviction

Hit Hit

Hit
Hit
Hit

18
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How to know when eviction happens?

3.1.1 Baleen – Episodes

Block A
Time

Byte 
index

Admission

Eviction

Episode #1 Episode #2

Admission

Eviction

Eviction ageEviction age

How: model LRU cache state with assumed eviction age

19
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How episodes are generated

3.1.1 Baleen – Episodes

Block A
Time

Byte 
index Episode #1 Episode #2

Interarrivals

Split into episodes when interarrival > eviction age

Eviction ageEviction age

Consider interarrival times of accesses

20
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Episode #1

Focusing on Episode 1…

3.1.1 Baleen – Episodes

Block A
Time

Byte 
index

Admission

Eviction

Hit Hit

21
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Reason about episodes instead of accesses
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Benefits & costs defined on episodes
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Episode #1

• Benefit: 27ms of DT saved 

• Cost: 3 flash writes needed

#1 #2 #3

1
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Design 
Using episode-based policies to answer 

“What does good look like?”

24
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Admission: Baleen learns from episode-based OPT

25

Episode #1

OPT (approx. optimal) admits highest scoring episodes

Baleen imitates OPT admission

Score(Ep) = DTSaved(Ep)
FlashWrites(Ep)

Yes if Score(Ep) > CutoffTargetFlashWriteRate

= 27 ms
3 flash writes

OPT emits binary labels based on flash write budget
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• What range to prefetch 
• OPT-Range Start: lowest segment 
• OPT-Range End: highest segment 

• ML-Range is trained on OPT-Range

Baleen’s ML-Range learns what to prefetch

26
3.1.3. Baleen – Prefetching: what and when?
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Baleen’s ML-When learns when to prefetch
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• When to prefetch 
• Bad prefetching hurts: wasted DT & cache space 
• Prefetch only when confident of benefits 
• ML-When: Yes if 

3.1.3. Baleen – Prefetching: what and when?
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• Q: How to balance #HDD against #SSDs? 

• Baleen-TCO picks optimal flash write rate 
• for each workload

Baleen-TCO balances HDD savings against SSD cost

28

*TCO function based on Google’s CacheSack [Yang23]

Measure Vary
HDD cost SSD cost+
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• Production workloads from Meta’s Tectonic 
• 7 clusters from 3 years (2019, 2021, 2023) 
• Each serves 1-10 tenants, e.g., data warehouse 
• Each tenant serves 100s of applications 

• More details on Tectonic in Pan et al (FAST 2021) 
• Traces & simulator code released

Evaluation

29
3.3. Baleen – Evaluation
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Baseline admission policies

30

• CoinFlip: flip a coin for each IO 
– Simplest, requires no state 

• RejectX (e.g., X=1: accept segment after 1 reject) 
– Used by Meta, Google as baseline 
– 2nd access is always a miss 

• CacheLib-ML 
– Used by Meta in production for 3 years 
– Trained on accesses, not episodes

3. Baleen – Admission
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• We train (offline) on Day 1 and evaluate on Day 2-7 
• We compare policies’ Peak DT (as a % of no caching)

Minimize peak backend load to minimize cost

31

C 
in
Fl
ip

Re
je
ct
X

Ba
le
en

(N
  
Pr
ef
et
ch
)

Ba
le
en

0

10

20

30

40

50

Pe
ak
 B
ac
ke
nd

 L
 a
d

(%
  
f n

  
ca
ch
e)

R
ej

ec
tX

B
al

ee
n

3.3. Baleen – Evaluation

Lower is better
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Reduce peak load to lower total cost

32
2.1.2 Background – Minimize Peak DT

Peak load

Lower 
peak load

Fewer 
hard disks 
& backend servers

Lower TCO 
Total Cost of Ownership 

dominated by media costs
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Baleen saves most cost

33
3.3.3 Baleen – Baleen reduces peak DT over baselines
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Baleen saves most cost

34
3.3.3 Baleen – Baleen reduces peak DT over baselines
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17% savings in TCO
In paper: 14% less IO misses 
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Prefetching accounts for most benefit

35
3.3.3 Baleen – Baleen reduces peak DT over baselines

Prefetching 
saves most
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Prefetching depends on good admission decisions

36

• Choice of admission policy matters 

• ML prefetching makes admission baselines worse 

• Even with ML admission, 2 models required 

• ML-Range to know what to prefetch 

• ML-When to select when to prefetch

3.3.4 Baleen – Prefetch selectively, in tandem with admission
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• Baleen reduces cost by 17% 
• Episodes guide ML training 
• Optimize for Disk-head Time metric  
• Smart admission & prefetching 

• ML-Range predicts what to prefetch 
• ML-When estimates confidence in ML-Range 

• Ongoing work: workload drift mitigation 
• Seeking longer traces with features! (>1 week)

Conclusion

37
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Backup slides

38

• Benefits of episodes 
• What features are used? 
• What if we use more complex models? 
• What if we vary cache size? 
• Architecture 
• What workloads?
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Model Features

Features Models
Admission

Prefetch-Range

Prefetch-When

Output
Y/N

start

end

Y/N

● Namespace 
● User 
● Temp. / Perm.
● IO start, end
● Hourly #accesses 

(last 6)

3.2. Baleen – Implementation
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Overhead

40

• Limiting factor: latency of a miss going to disk 
• IO: 13 to 56 ms 

• Training: 1-5 mins 
• Inference latency: ~30µs per inference 

• 4 inferences per access 
• Metadata: <1kB per 128kB segment (<1%)
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What about write amplification?

41

• Baleen focuses on larger items (~1MB) 
• Focus on reducing the long-term flash write rate 
• Minimum flash write: 128KB (a segment) 

• Kangaroo focuses on small objects 
• How you would use this in production 

• CacheLib with a small object cache (Kangaroo) 
and large object cache (Baleen) 
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Why DT matters: example

42

• Same flash writes, same number of IOs saved 
• Right saves more DT (and thus disk load)

Time
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Flash Cache 
(e.g., CacheLib) 

Overall Architecture

Storage system 
(e.g., Tectonic) 

Deployment TimeTraining Time

Admission Policy

Prefetcher

Trace

Episodes model

used to train

IOIO

Admission Policy

Prefetcher

3.2. Baleen – Implementation
43
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Online Baleen

44

• Keeping track of information needed to score episode 
• Admissions & evictions (to know boundaries) 

• Determine score cut-off dynamically

Score(Ep) = DTSaved(Ep)
FlashWrites(Ep)

Score(Ep) > DynamicCutoffTargetFlashWriteRate
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Why we use GBMs

45

Gradient-Boosting Machines 
(decision trees)

3.2. Baleen – Implementation

• Accuracy 
• On par with our attempt at a Cache Transformer 

• Robustness 
• Low inference overhead 

• <1% increase in overall CPU usage
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GBM performs as well as Transformer

46
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• DT = Seek time x #IOs + Read time x #Bytes (Eq 1)
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Di k-Head Time (Equation 1)

Calculated DT matches measured DT

47
2.1.2 Background – Measure DT
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Baleen-TCO

48

• Picks the optimal flash write rate to minimize ‘TCO’
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