
This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-931971-44-7

Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Mainstream: Dynamic Stem-Sharing
for Multi-Tenant Video Processing

Angela H. Jiang, Daniel L.K. Wong, Christopher Canel, Lilia Tang, and Ishan Misra,
Carnegie Mellon University; Michael Kaminsky, Michael A. Kozuch, and Padmanabhan Pillai,

Intel Labs; David G. Andersen and Gregory R. Ganger, Carnegie Mellon University

https://www.usenix.org/conference/atc18/presentation/jiang

Mainstream: Dynamic Stem-Sharing for Multi-Tenant Video Processing

Angela H. Jiang, Daniel L.-K. Wong, Christopher Canel, Lilia Tang, Ishan Misra,
Michael Kaminsky†, Michael A. Kozuch†, Padmanabhan Pillai†,

David G. Andersen, Gregory R. Ganger
Carnegie Mellon University; †Intel Labs

Abstract

Mainstream is a new video analysis system that jointly
adapts concurrent applications sharing fixed edge re-
sources to maximize aggregate result quality. Mainstream
exploits partial-DNN (deep neural network) compute shar-
ing among applications trained through transfer learning
from a common base DNN model, decreasing aggregate
per-frame compute time. Based on the available resources
and mix of applications running on an edge node, Main-
stream automatically determines at deployment time the
right trade-off between using more specialized DNNs to
improve per-frame accuracy, and keeping more of the
unspecialized base model to increase sharing and pro-
cess more frames per second. Experiments with several
datasets and event detection tasks on an edge node confirm
that Mainstream improves mean event detection F1-scores
by up to 47% relative to a static approach of retraining only
the last DNN layer and sharing all others (“Max-Sharing”)
and by 87X relative to the common approach of using
fully independent per-application DNNs (“No-Sharing”).

1 Introduction

Video cameras are ubiquitous, and their outputs are in-
creasingly analyzed by sophisticated, online deep neural
network (DNN) inference-based applications. The ever-
growing capabilities of video and image analysis tech-
niques create new possibilities for what may be gleaned
from any given video stream. Consequently, most raw
video streams will be processed by multiple analysis
pipelines. For example, a parking lot camera might be
used by three different applications: reporting open park-
ing spots, tracking each car’s parking duration for billing,
and recording any fender benders.
This paper focuses on video processing on edge de-

vices, which will be a common way to address bandwidth
limitations, intermittent connectivity (e.g., in drones),
and real-time requirements. Applications executing at
the edge, though, face tighter bounds on resource avail-
ability than in datacenters. Naturally, optimal video
application performance requires tuning for the resources

M-SCHEDULER

2

3

4 5

1 App 1 dataset

M-TRAINER

M-RUNNER

M-TRAINER

M-Package M-Package

App 2 dataset

App 1 result

App 2 result

Figure 1: Mainstream Architecture. Offline, for each task,
M-Trainer takes a labeled dataset and outputs an M-Package.
M-Scheduler takes independently generated M-Packages, and
chooses the task-specific degree of specialization and frame rate.
M-Scheduler deploys the unified multi-task model to M-Runner,
performing inference on the edge.

available [48, 12, 51, 18, 26].
Unfortunately, what resources will be available to the

application at deployment time is often unknown to the
developer. Further, resource availability changes as addi-
tional applications arrive and depart. Instead, individual
application developers typically develop their models in
isolation, assuming either infinite resources or a predeter-
mined resource allotment. When a number of separately
tuned models are run concurrently, resource competition
forces the video stream to be analyzed at a lower frame
rate—leading to unsatisfactory results for the running
applications, as frames are dropped and events in those
frames are missed. However, due to the popularity of
transfer learning (Sec. 2) [40, 47, 37, 43], contention
can be reduced by eliminating redundant computation
between concurrent applications [18].

Mainstream is a new system for video processing that
addresses resource contention by dynamically tuning de-
grees of work sharing among concurrent applications.
Specifically, it focuses on sharing portions of DNN infer-
ence, which consumes the majority of video processing
cycles. Mainstream exploits the potential “shared stem”
of computation that results from application developers’
use of the standard DNN training approach of transfer
learning. In transfer learning, training begins with an
existing, pre-trained DNN, which is then re-trained for a
different task. Typically, only a subset of the pre-trained
DNN is specialized; when different applications start

USENIX Association 2018 USENIX Annual Technical Conference 29

with the same pre-trained DNN, Mainstream identifies the
common layers and executes them only once per frame.
A critical challenge of exploiting shared stems well is

determining how much to share. Application developers
usually specialize as much of the pre-trained DNN as is
necessary to achieve high model accuracy. More special-
ization, however, means that less of the pre-trained DNN
can be shared. Thus, there is an explicit trade-off between
the benefits of greater per-frame accuracy (via more-
specialized DNNs) and processing more frames of the
input video stream (via more sharing of less-specialized
DNNs). The right choice depends on the edge device
resources, the number of concurrent applications, and
their individual characteristics.
Deployment time model selection. Mainstream

moves the final DNN model selection step from appli-
cation development time to deployment time, when the
hardware resources and concurrent application mix are
known. By doing so, Mainstream has the necessary infor-
mation to select the right amount of DNN specialization
(and thus sharing) for each application. As applications
come and go, Mainstream can dynamically modify its
choices. Previous systems like VideoStorm [48] select
models by considering each application independently.
The specialization-vs-sharing trade-off, however, can only
be optimized when considering applications jointly. Joint
optimization produces a combinatorial set of options,
which Mainstream navigates using application metadata
and domain-specific models; the system uses this infor-
mation to estimate the effects of DNN specialization and
frame sampling rate on application performance. Unlike
black-box approaches, Mainstream can jointly optimize for
stem-sharing without needing to profile each combination.
Mainstream consists of three main parts (Fig. 1). The

M-Trainer toolkit helps application developers manage
their training process to produce the information needed
to allow tuning the degree of specialization at deployment
time. Current standard practice is for developers to ex-
periment with different model types, hyperparameters,
and degrees of re-training to find the best choice for an
assumed resource allocation, discarding the trained DNN
models not chosen. M-Trainer instead keeps “less opti-
mal” candidate DNN models, together with associated
training-time information (e.g., per-frame accuracy, event
detection window). TheM-Scheduler uses this informa-
tion, together with a profile of per-layer runtime on the
target edge device, to determine the best candidate for
each application—including the degrees of specializa-
tion and, thus, sharing. It efficiently searches the option
space to maximize application quality (e.g., average F1
score among the applications). The M-Runner runtime
system runs the selected DNNs, sharing the identical
unspecialized layers.
Experiments with several datasets and event detection

 Sensor Frame
Ingest

Image
Transform DNN Classifier

Figure 2: Example computation pipeline for event detection.

tasks on an edge node confirm the importance of making
deployment-time decisions and the effectiveness of Main-
stream’s approach. Results show that dynamic selection of
shared stems can improve F1-scores by up to 87X relative
to the common approach of using fully-independent per-
application DNNs (No-Sharing) and up to 47% compared
to a static approach of retraining only the last DNN layer
and sharing all others (Max-Sharing). Across a range of
concurrent applications, Mainstream adaptively selects a
balance between per-frame accuracy and frame sampling
rate that consistently provides superior performance over
such static approaches.

Contributions. This paper makes three main contri-
butions. First, it highlights the critical importance of
reducing aggregate per-frame CPU work of multiple in-
dependently developed video processing applications via
stem-sharing; No-Sharing is unable to support even three
concurrent applications on our edge node deployment.
Second, it identifies the goodness trade-off between per-
frame quality and the frame sampling rate dictated by the
degree of DNN specialization (and thus the amount of
sharing). Third, it describes and demonstrates the efficacy
of the Mainstream approach for automatically deploy-
ing the right degree of specialization for each submitted
application’s DNN.

2 Background

DNNs are a powerful tool used in computer vision tasks
such as human action recognition [43], object detec-
tion [15], scene geometry estimation [14], face recogni-
tion [45], etc. Fig. 2 shows a typical computation pipeline
for an image classification application. Although frame
ingest and image preprocessing are necessary stages of
computation, they are low cost and easily shared between
concurrent applications. DNNs, on the other hand, are
typically unique to each application and computationally
expensive: in one image classification application we
run, the DNN inference incurs 25X more latency than the
preprocessing steps.

DNNs and transfer learning. A machine learning
(ML) model is a parameterized function that performs a
task. Training is the process of learning parameter values
(called weights) such that the model will approximate the
desired function with some measure of accuracy. For
example, when training an image classifier, one might
examine labeled input images and use gradient descent to
find a set of weights that minimizes a loss function over
the labels. Using the trained model to find the function’s

30 2018 USENIX Annual Technical Conference USENIX Association

.1

.1

.2

.6

(a) Base DNN model

.1

.1

.8

(b) App. #1’s DNN model

.2

.7

.1

(c) App. #2’s DNN model

.2

.7

.1

.1

.1

.8

(d) As executed in Mainstream

Figure 3: Fig. 3a depicts a base DNN trained from scratch for its task. Fig. 3b and Fig. 3c show two new task DNNs, fine-tuned
against the base DNN. App. #1 freezes more layers during training than App. #2. Fig. 3d shows howMainstream runs the applications
concurrently. Layers frozen by both App. #1 and App. #2 can be shared.

Architecture Number of
Layers

ImageNet Top-1
Accuracy (%)

InceptionV3 314 78.0
MobileNets-224 84 70.7
ResNet-50 177 75.6

Table 1: Top-1 accuracy of three neural networks architectures
trained on the ImageNet dataset.

output given a new, unlabeled input is called inference.
DNNs are a class of ML models that usually have a

large input space, such as the pixels of an image. A DNN
can be represented by a graph where nodes are organized
into layers; each node computes a function of its inputs,
which are outputs from the previous layer.

The “deep” in DNNs refers to their many layers. In-
creasingly, successful applications of DNNs have largely
been the result of building models with more layers that
take larger vectors of inputs [42, 29, 19, 44]. The success
of these models has hinged critically upon the arrival of
very large, labeled datasets for training [13, 32, 3].

Training these large models is notoriously hard. One
often lacks sufficient labeled data or computational re-
sources to train such a model. Transfer learning is an
alternative to training a model from scratch. Here, a model
that has already been trained on a similar task (a base DNN
as in Fig. 3a), is used as an initialization point or feature
extractor for the new target DNN. During training, a subset
of the old parameters are frozen and do not change. The
remaining free parameters are then retrained on the new
task with a new training dataset (Fig. 3b and Fig. 3c). This
process fine-tunes these parameters to achieve a result
comparable to end-to-end training on the entire DNN,
but does so with much less data and at a much lower
computational cost. In practice, few practitioners train
networks from scratch, let alone develop novel network
architectures. Transfer learning via one of a few popular
neural networks is standard practice.
DNNs for image classification and event detection.

Although we believe that Mainstream’s approach is gener-
ally applicable to video stream analysis, in this paper, we
focus on applications that use image-classification DNNs
to perform event detection.

Image classification aims to assign one label from a
set of categories or classes to each image. For example,
a 10-class classifier takes an input image and returns a
10-item vector of probabilities representing the likelihood
that the image belongs to each class. Top-N accuracy is
the probability that the correct label is among the top-N
highest probability output labels. So, Top-1 accuracy
indicates the fraction of images that the model classifies
correctly. We refer to this metric as the per-frame accuracy
in the context of video classification. Popular neural
network architectures for image classification include
ResNet [19], InceptionV3 [44], and MobileNets [20].
Table 1 describes these three neural networks and their
Top-1 accuracy achieved on the ImageNet dataset [13].
Networks trained on ImageNet are popular base-DNNs
for image classification tasks.

We define an event as a contiguous group of frames
containing some visible phenomenon that we are trying to
identify: e.g., a cyclist passing by, or a puff of smoke being
emitted. One way of doing event detection is to perform
image classification across a sequence of frames. An
event is detected if at least one of the contiguous frames is
sampled, analyzed, and correctly labeled. Previous works
[31] have also used this existence metric to measure recall
and precision of range-based queries. (Event detection is
not to be confused with object detection, where the goal
is to locate an object in a single frame. Indeed, object
detection is another way of performing event detection.)
We evaluate event classification applications by measuring
the event F1-score, the harmonic mean between event
recall and event precision. The event recall reports the
proportion of ground truth events identified. The event
precision reports the proportion of classified events that
are true positives. Note that these metrics are relative

USENIX Association 2018 USENIX Annual Technical Conference 31

to the detection of events across multiple frames and are
distinct from per-frame metrics (e.g., Top-1 accuracy).

3 Mainstream Approach: What and Why

Sharing computation betweenDNNs. When supporting
multiple inference applications on a single infrastructure,
the common approach is to execute every application’s
DNN model independently. We refer to this as a “No
Sharing” approach. To avoid redundant work, Mainstream
instead computes results for DNN layers common to
multiple concurrent applications just once and distributes
the outputs of shared stems to the specialized layers of
all sharing applications. This is analogous to common
subexpression elimination used in other domains, e.g.,
optimizing compilers or database query planners.

Fig. 3 illustrates how compute sharing can be leveraged
when two DNNs are fine-tuned from a common pre-
trained model and have some unspecialized layers in
common. Compute sharing can significantly affect per-
frame computation cost and improve throughput for a
given CPU resource. Fig. 4a quantifies this effect. It
shows the throughput achieved by Mainstream running
up to eight concurrent InceptionV3-based event detection
pipelines, as a function of howmanyDNN layers they have
in common (i.e., their common degree of specialization).
With no sharing (the left-most points), adding a second
application halves throughput, which continues to degrade
geometrically as more applications are added. Moving
to the right, throughput improves as more layers are
shared. When all but the last layer are shared, additional
applications can be run at very low marginal cost.

On the other hand, there are costs to enabling sharing by
leaving many layers unspecialized. In particular, the per-
frame accuracy of a model may be lower when only a few
layers are specialized. Fig. 4b shows the effect of special-
ization on per-frame accuracy for several combinations of
DNN architectures and classification tasks. As expected,
accuracy decreases slowly as less-specialized networks
are employed (and hence more sharing is enabled)— with
a large decrease occurring only when the fraction of the
network specialized is very small. This characteristic
enables Mainstream to share large portions of the network
with low accuracy loss.

Adaptive management of the sharing opportunity.
Since transfer learning is so commonly used by ML devel-
opers, and base models are shared within organizations
and on the Internet, there may be many opportunities to
exploit inter-DNN redundancy in the unspecialized layers.
Most developers either use a popular default of specializ-
ing only the last layer (which is great for sharing potential,
at the potential cost of model accuracy) or determine the
degree of specialization based on the amount of training
data available, since retraining too many layers without

sufficient training data leads to over-fitting. Notably, each
developer decides independently.
The problem with this approach is that the impact

of sharing computation on application quality depends
on factors only known at deployment time: the set of
concurrent applications and the resources of the edge
node on which they are run. Hence, Mainstream defers
the decision regarding how much specialization to employ
from application development time to deployment time.

Impact of sampling rate for event detection. Given
the trade-off between per-frame accuracy and frame pro-
cessing throughput, picking the right degree of specializa-
tion is challenging. Consider an application formonitoring
environmental pollution from trains, which is being built
using a train detector we deployed. When the application
detects a train coming into view, it triggers the capture
of high fidelity frames of the train’s smoke stack (for
subsequent pollution analysis).

Increasing specialization to improve per-frame accuracy
increases the probability of correctly classifying frames
containing trains— but reduces shared computation. This,
in turn, leads to less frequent sampling, which removes
opportunities to analyze frames containing a particular
view of a train. A higher frame rate increases the prob-
ability that an event will be observed in more frames,
creating more opportunities for detection. So, the ques-
tion becomes: should one sample more frames using a
less accurate model or sample fewer frames using a more
accurate model?

Analytical model for event detection. The Main-
stream scheduler (Sec. 6) navigates this “accuracy vs.
sampling rate” space by evaluating various candidate
{specialization, frame rate} tuples. To do so, however,
the scheduler must be able to interpret the benefit at the
application (not per-frame) level. Hence, we propose an
analytical model (sketched in Equations 1-4, below) that
approximates the event F1-score for a given DNN, given
estimates of (a) event length, (b) event frequency, (c) the
correlation between frames (discussed below), (d) per-
frame DNN accuracy, and (e) DNN analysis frame rate.
The frame rate (e) comes directly from the scheduler’s
proposed tuple; similarly, the accuracy (d) associated
with a given specialization proposal will be available
to the scheduler (see Sec. 5). Values for event length
(a), frequency (b), and correlation (c) can either be mea-
sured using representative video samples, or they can be
estimated by the developer.
We are able to predict the application’s F1-score by

estimating the expected number of frames per event that
we will have the opportunity to analyze and computing the
probability that analyzing the set of frames will result in a
detection. The expected number of frames analyzed per
event is dependent on the event length and frame rate. The
per-frame Top-1 accuracy represents the probability that

32 2018 USENIX Annual Technical Conference USENIX Association

0 20 40 60 80 100
% of layers that are unspecialized (shared)

0

5

10

15

20
Th

ro
ug

hp
ut

 (F
PS

) 1 apps
2 apps
3 apps
4 apps
5 apps
6 apps
7 apps
8 apps

(a) Throughput vs. Sharing

0 20 40 60 80 100
% of layers that are unspecialized

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
Ac

cu
ra

cy

Bus-InceptionV3
Cars-MobileNets
Bus-ResNets50
Bus-MobileNets
Schoolbus-MobileNets

Schoolbus-InceptionV3
Pedestrian-MobileNets
Schoolbus-ResNets50
RedCar-MobileNets
Scramble-MobileNets

(b) Per-frame accuracy vs. (Potential) sharing

Figure 4: Conflicting consequences of DNN compute sharing. (a) shows the frame processing rate for 1–8 concurrent event detection
applications as a function of the fraction of the InceptionV3 DNN they share, from No-Sharing on the left to sharing all but the
last layer (Max-Sharing) on the right. The experiments are run on the hardware described in Section 7. (b) shows Top-1 accuracy
as a function of the fraction of unspecialized layers for three popular DNN architectures (ResNet-50 [19], InceptionV3 [44], and
MobileNets-224 [20]) using six of the datasets described in Table 2. We trained each classifier using all three network architectures
but omitted some curves for brevity. The horizontal axis starts from fully specialized DNNs on the left to only the last layer being
specialized on the right; recall that potential computation sharing is limited to the unspecialized layers.

we will classify any individual frame correctly. However,
this does not factor in the fact that sequential frames of
an event may be correlated in some way. We therefore
introduce and estimate the inter-frame correlation, which
measures the marginal benefit of analyzing more frames
of a single event.
The inter-frame correlation, corr, is based on condi-

tional probabilities. For frames corresponding to an event,
if P(Xi) and P(¬Xi) are the probabilities of detecting
or not detecting the event in frame i, respectively, then
P(¬X2 | ¬X1) is the probability of not detecting the event
in frame X2, given that we did not detect it in frame X1.
This conditional probability can be measured empirically
from training data. Relying on the Kolmogorov definition,
we can calculate the probability the event is detected in at
least one of the two frames as 1− P(¬X2 | ¬X1) ∗ P(¬X1).
This logic can be extended to approximate the probability
of detecting the event in N tries and to estimate recall.

To estimate recall, we calculate the probability that our
DNN will correctly classify at least one frame of an event
using the following steps:

N =

{⌈
d

stride
⌉

w.p. d−(stride%d)
stride⌊

d
stride

⌋
else

(1)

Pmiss_1 = 1 − accuracyper− f rame (2)
Pmiss_N = corrN−1 ∗ Pmiss_1 (3)
recall = 1 − Pmiss_N (4)

We use Eq. 1 to calculate N , the expected number of
frames of the event that the model will process. Here,
d is the event length, and stride is the inverse of the
frame rate. Equation 3 estimates the probability the

1
100

1
10

1
Frame sample rate

0.5

0.6

0.7

0.8

0.9

1.0
Ev

en
t R

ec
al

l

Fully Independent
Profiled
Mainstream Prediction
Fully Dependent

Figure 5: Effect of sample-rate on recall, for different inter-
frame correlations. The dotted vertical lines represent each
train in the dataset, denoting 1

trainlength , which is the sample
rate required to ensure that one frame of that train is analyzed.
The “Profiled” line is measured directly from the Train video
dataset, and the other three are approximations based on different
inter-frame correlations (uncorrelated, fully correlated, and the
empirical correlation observed in the Train dataset).

DNN misclassifies all N analyzed frames. Recall is the
complement: the probability that we correctly classify at
least one frame of the event.
To estimate the false positive rate, we repeat this cal-

culation, except that d is the number of frames between
events (derived from the event frequency), and Pmiss_1 is
the probability of true negatives. The true positive rate,
the false positive rate, and the event frequency are used
to calculate the precision. The F1-score is the harmonic
mean between precision and recall.
To evaluate our model, we profile an application and

USENIX Association 2018 USENIX Annual Technical Conference 33

measure the actual recall observed when running the event
detector application (e.g., train detection) on the video
stream at different sampling rates (Fig. 5). This was mea-
sured by averaging the recall achieved from 10,000 trials
of sampling at each sample rate. The result is plotted
by the “Profiled” line. Our analytical model (“Main-
stream Prediction”) is sufficiently accurate to describe
the complex relationship between frame sample rate and
application recall. Mainstream uses this analytical model
to efficiently optimize for the trade-off between per-frame
accuracy and frame rate.
We use Mainstream for event detection but believe its

approach can be generally applied to DNN-based tasks
where application quality depends not only on its model,
but also on its input sampling rate (e.g., object tracking,
action recognition.)

4 Mainstream Architecture

We have developed Mainstream, a training and runtime
system for DNN-based live analytics of camera streams,
which (a) enables efficient sharing of computation be-
tween detection applications, (b) maximizes event F1-
score across all tasks, and (c) allows each task to be inde-
pendently developed, trained, and deployed. Fig. 1 shows
the architecture of Mainstream, which consists of three
components: M-Trainer, M-Scheduler, and M-Runner.
To deploy a new application to Mainstream, the user

provides a corresponding labeled training dataset to their
local instance of M-Trainer (Step 1). M-Trainer uses
the dataset to train a number of potential models, with
varying numbers of specialized layers. This Model Set
and associated metadata are then assembled into an “M-
Package” (Step 2). Note that these are offline steps,
performed just once per application prior to deployment,
independent of all other tasks. At runtime, M-Scheduler
uses theM-Packages of all currently-deployed applications
to determine, for each application, the degree of DNN
sharing and sampling rate such that, across all applications,
the event F1-score is maximized, subject to the resource
limits of the edge platform (Step 3). M-Scheduler runs in
the datacenter, and is executed once for each scheduling
event (e.g., a change in the deployed set of applications, or
in available hardware resources). M-Runner then executes
the selected model configuration on edge devices (Step 4)
and returns app-specific results in real-time (Step 5).

M-Runner is a relatively straightforward execution sys-
tem for running visual processing pipelines. It accepts
a DAG, where each node represents a unit of indepen-
dent computation, and connections represent data flow.
Fig. 2 illustrates the logical DAG for an image classifica-
tion application. Most of the computation is expected in
the “DNN” process, which evaluates the merged DNN
of all concurrent tasks. This combined DNN, as illus-

trated in Fig. 3d, represents the set of models selected
by M-Scheduler across all tasks. This DNN is structured
as a tree, with sets of layers branching from the shared
stem. M-Runner executes the shared stem once per frame,
reducing the total processing costs of the deployed tasks.
We next describe how M-Trainer independently trains

model candidates for potential sharing (Sec. 5) and how
M-Scheduler dynamically chooses among them (Sec. 6).

5 Distributed Sharing-Aware Training

M-Trainer produces a set of models for each task so that
they can be combined dynamically at runtime to maximize
collective performance. Application developers use M-
Trainer independently at different times and locations.

One approach to sharing computation between appli-
cations would be to jointly train them using a multi-task
network. This, however, requires centralized training of
applications. MCDNN [18] proposed fine-tuning models
independently and sharing the unspecialized DNN layers.
This static approach prevents M-Scheduler from dynami-
cally tailoring stem-sharing to the available resources. In
contrast, M-Trainer generates a set of models that vary
in the number of specialized layers. These models com-
pose an application-specific Model Set. The generation
of Model Sets allows for the late binding of the degree
of specialization to deployment time, when the platform
characteristics and co-deployed applications are known.
To construct a Model Set, M-Trainer first analyzes

the structure of the base DNN to identify branchpoints,
the potential boundaries between frozen and specialized
layers. Using the app-specific training data provided by
the developer, M-Trainer generates a set of fine-tuned
DNN models, one per branchpoint, where layers up to the
branchpoint are frozen, and the rest are specialized. Only
the models at the Pareto-optimal frontier with respect to
number of layers specialized and estimated accuracy are
actually included in the M-Package. This eliminates from
considerationmodels that reduce accuracy, while requiring
more specialization. For example, an overfitted model,
caused by specializing too many layers with insufficient
training data, will not be included.

Model Sets are bundled together with application meta-
data into an M-Package. This metadata includes the
measured per-frame accuracy of each model (we use a
portion of the data as the validation dataset.) The expected
minimum event duration, event frequency, and inter-frame
correlation are optionally measured from the training data
and included in the M-Package, or directly provided by
the application developer.
The construction of the M-Package is an offline oper-

ation, which is run just once per application. For each
application, M-Trainer must train multiple models. Al-
though training a model from scratch can be very resource

34 2018 USENIX Annual Technical Conference USENIX Association

intensive, fine-tuning is much quicker. M-Trainer creates
Model Sets with 15 model options in 8 hours on a single
GPU (Sect. 7). Note that the computation for generating
all of the models is easily parallelized in a datacenter set-
ting, and may not be significantly higher than traditional
fine-tuning. For example, to find the right number of lay-
ers to specialize in order to maximize accuracy, one may
need to generate these models anyway. The key difference
here is that intermediate runs are not discarded, and the
final selection is made at run time by M-Scheduler.

As each application’s models are independently trained
and analyzed, no coordination or sharing of training data
is needed between developers of different tasks. The re-
sulting M-Package, however, contains enough information
that M-Scheduler, at run time, can optimize across the
independently-developed tasks.

6 Dynamic Sharing-Aware Scheduling

At each scheduling event (typically, an application submis-
sion or termination), M-Scheduler uses the M-Packages
created by the various per-application M-Trainers to pro-
duce a new overall schedule that optimizes some global
objective function, subject to resource constraints (cur-
rently, M-Scheduler maximizes average event F1-score
across applications). The schedule consists of a DNN
model selection (indicating the degree of sharing) and
target frame-rate for every running application.1 The final
schedule is a tree-like model with applications splitting
from a shared stem at potentially different branch points,
with each application able to run at its own frame rate.

M-Scheduler optimization algorithm. With N appli-
cations to schedule, S possible specialization settings per
application, and R frame-rate settings per application, the
number of possible schedules is (S · R)N . Although this
space is large (e.g., N ≈ 10, R ≈ 10, and S ≈ 10 in our
experiments), M-Scheduler can efficiently determine a
good schedule using a greedy heuristic (Algo. 1). We
compare the schedules generated by our greedy scheduler
to those of an exhaustive scheduler in >4,800 workloads
each consisting of up to 10 applications, and find that the
greedy schedules are on average within 0.89% of optimal.
Essentially, at each step of our iterative algorithm, the

scheduler considers making a move which improves the
application quality of a single application by tweaking its
frame rate and/or model specialization. The algorithm
greedily selects the move that yields the best ratio of
benefit to cost, defined below. Naturally, before this
iterative refinement, the schedule is initialized to the
lowest cost configuration— Max-Sharing with minimum
frame rate. At any iteration step, the number of possible

1Here, we assume that some admission control policy (outside the
scope of this work) has been applied to ensure that some schedule is
feasible for the set of running applications.

Algorithm 1 Scheduler optimization algorithm
function Get Next Move(schedule)
. Finds change to schedule with the highest benef it

cost

function Schedule(budget)
sched← Get Schedule(max_sharing, min_fps)
while True do

next_move← Get Next Move(sched)
cost← cost + Get Cost(next_move)
if cost < budget then

sched← Update Schedule(next_move)
else return sched

moves is bounded by S · R · N . The total number of moves
per invocation of the scheduler is similarly bounded by
S · R · N , but in practice is much fewer as the set of
potential moves that fit within the computational budget
is exhausted.

Measuring the Benefit of a Move. The benefit associ-
ated with a move captures the improvement in F1-score for
the application associated with that move. This value is
calculated using the analytical model presented in Sect. 3
and the application metadata in the M-Package.

Measuring the Cost of a Move. The cost value con-
sidered represents the computational resources (e.g., CPU-
seconds per second) consumed by a given schedule ar-
rangement and depends on the number of shared sub-
graphs, the number of task-specific subgraphs, and the
intended throughput (frame-rate) of each subgraph. The
relative cost of a schedule is the sum of the execution time
of each model layer, multiplied by the desired throughput.
Consider for example a schedule with two applications,
both executing at F FPS. Assume they share a compute
stem A, and then branch to specialized subgraphs B1 and
B2. If CA represents the execution cost (in CPU-seconds
per frame, say) of A, and CB the execution cost of B1 and
B2, then the total cost of the schedule is F · CA + 2F · CB.
Adding a third application based on the same network, us-
ing the same branchpoint and frame rate will add another
factor of F · CB to the schedule cost.
To most accurately model the compute costs (e.g., CA

andCB), a forward pass execution of the base DNN should
be executed and measured once on the target hardware.
Note that as cost is relatively insensitive to the assigned
model weights, each base DNN need only run one time
(ever) per target hardware, not once per trained application.

Max-Min Fairness Among Applications. Although
stem-sharing improves overall system efficiency, max-
imizing a global objective may lead to an inequitable
allocation of resources for individual applications. Thus,
M-Scheduler can also be run in max-min fairness mode,
which maximizes the minimum benefit among applica-
tions, instead of the average. Max-min fairness is sched-
uled by searching the space using dynamic programming.

USENIX Association 2018 USENIX Annual Technical Conference 35

X-Voting To Improve Precision. Mainstream uses
voting across frames to improve precision, and consequen-
tially F1-score. With X-voting, Mainstream requires X
consecutive positives to identify an event. While X-voting
decreases false positives, it is not guaranteed to increase
precision. For X-voting to improve precision, it must
decrease false positives at a higher rate than true positives.
The ideal X-voting configuration again depends on the
applications and the resources available. A higher X
incurs fewer false positives, but requires more cost to
sustain high recall (either by increasing FPS or increasing
specialization). We evaluate the effect of various X-voting
configurations in Sect. 8.

7 Experimental Setup

To evaluate our system, we implement seven different event
detection applications. We refer to the set of applications
as 7-Hybrid. These are listed in Table 2, along with the
datasets we used to train and test them. A pedestrian-
detection application (Pedestrian) is trained based on
the fully-labeled, publicly-available Urban Tracking video
dataset [25]. Our application to classify car models (Car)
uses the Stanford Cars image dataset [28]. Train detection
(Train) is based on video of nearby train tracks that we
have captured in our camera deployment, and have hand
labeled. The remaining classifiers are trained on a video
of a nearby intersection, also captured in our camera
deployment. We have obtained the necessary permissions
and plan to make our Trains and Intersection video dataset
available publicly. We reserve a portion of these datasets
to create synthetic video workloads for testing.

We use M-Trainer to produce a task-specific M-Package
for each application. Model candidates are fine-tuned
using the MobileNets-224 model pretrained on ImageNet
as a base DNN (implemented in Keras [8] using Tensor-
Flow [2]). Each M-Package contains several models with
different degrees of fine-tuning as described in Section 5.
We evaluate Mainstream using the M-Packages and hold-
out validation sets from our datasets. Our experiments
use the applications in Table 2.
Hardware. Training is performed on nodes equipped

with Intel® Xeon® E5-2698Bv3 processors (2.0 GHz,
16 cores) and an Nvidia Titan X GPU. All end-to-end
experiments use an Intel® NUC with an Intel® Core™ i7-
6770HQ processor and 32 GiB DRAM, which is intended
to represent an edge processing device. The Train and
Intersection videos were captured using an Allied Vision
Manta G-1236 GigE Vision camera.

8 Evaluation

We evaluate our system in the context of independent
DNN-based video processing applications sharing a fixed-

resource edge computer. In our evaluation, we show that
Mainstream’s dynamic approach outperforms static solu-
tions in all of our experimental settings, across various
application workloads, computational budgets, and num-
bers of concurrent applications. Mainstream’s X-voting is
capable of improving F1-score but, like model specializa-
tion, must also be dynamically configured to the resources
available. In addition to our benchmarked applications,
we show an end-to-end Mainstream deployment of a train
detection application used for environmental pollution
monitoring.

8.1 Mainstream Improves App Quality
Our goal in event detection is to maximize per-event
F1-score. We compare the F1-score achieved by Main-
stream with two baselines: No-Sharing and Max-Sharing.
No-Sharing is the default behavior for a multi-tenant
environment and is the approach taken by systems like
TensorFlow Serving [1] and Clipper [12]. No-Sharing
maximizes classification accuracy at the cost of a re-
duced sampling rate and requires no coordination between
tenants. Max-Sharing is the sharing approach used by
MCDNN [18]. It uses partial-DNN sharing by fine-tuning
the final layer of concurrent DNNs. In many cases, Max-
Sharing provides better F1-score relative to No-Sharing
when a non-trivial number of applications share the infras-
tructure; it sacrifices classification accuracy to maximize
the number of frames processed. We show, however,
that Max-Sharing is less effective than making deliberate
runtime decisions about how much sharing to use.
In order to observe the effects of increasingly con-

strained resources without a large number of distinct appli-
cations, we generate additional applications by augmenting
our application set. Each of the seven classification tasks
in Table 2 has a corresponding “accuracy-tradeoff curve”,
which represents the relationship between per-frame ac-
curacy and the shared stem size (Fig. 4b). For each
application in our experiments, we randomly choose one
of the seven classifiers (and its corresponding accuracy-
tradeoff curve) and parameterize it with a different event
length, event frequency and inter-frame correlation. To
capture the effects of diverse application characteristics,
the parameters are uniformly sampled from a range of
possible values. Each workload consists of up to 30
concurrent applications. In most experiments, we show
the behavior averaged across 100 workloads. Our video
capture rate for all experiments is 10 FPS.

Mainstream outperforms static approaches. M-
Scheduler maximizes per-event F1-score by varying the
sampling rate and amount of sharing. Each additional
application introduces more resource contention, forcing
the system to pick a different balance between accuracy
and sampling rate to achieve the best average F1-score.

36 2018 USENIX Annual Technical Conference USENIX Association

Detection Dataset Number Avg Event Min Event Event
Task Description of Images Length Length Frequency
Pedestrians Urban Tracker atrium video 4538 59 2 0.63
Bus Intersection near CMU video 4762 1039 141 0.27
Red Car Intersection near CMU video 9172 228 46 0.08
Scramble Intersection near CMU video 1500 412 382 0.16
Schoolbus Intersection near CMU video 2600 854 92 0.03
Trains Train tracks near CMU video 3066 132 20 0.01
Cars Images of 23 car models 3042 — — —

Table 2: Labeled datasets used to train classifiers for event detection applications. Average and minimum event lengths are reported
in number of frames. Event length and event frequency only apply to video datasets and not Cars.

0 5 10 15 20 25
Number of concurrent apps

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

t F
1 (a) Frame Rel Acc: 0.96, FPS: 5.9

(b) Frame Rel Acc: 0.9, FPS: 5.6

(c) Frame Rel Acc: 0.59, FPS: 6.8

(d) Frame Rel Acc: 0.59, FPS: 6.8

(e) Frame Rel Acc: 1, FPS: 2.3
(f) Frame Rel Acc: 1, FPS: 0.36

Mainstream Max Sharing No Sharing

Figure 6: Mainstream improves F1-scores vs. No-Sharing
between applications or conservatively sharing all layers but the
last one. “Frame Rel Acc” is the relative image-level accuracy
of the model deployed, compared to the best performing model
candidate. “FPS” is the average observed throughput of the
deployed applications.

Fig. 6 compares Mainstream with our baseline strate-
gies. Mainstream delivers as much as a 87X higher
per-event F1-score than No-Sharing and as much as a 47%
higher score vs Max-Sharing. Fig. 6 reports F1-scores
averaged across 100 workloads. The relationship between
the three schedulers holds when examining individual
workloads. No-Sharing exhibits low recall because of its
low throughput—the system has fewer opportunities to
detect the event. Max-Sharing has high throughput but a
worse precision because the underlying model accuracy is
lower—it evaluates many frames but does so inaccurately.
Mainstream outperforms by striking a balance, sometimes
choosing a more accurate model, and sometimes choosing
to run at a higher throughput.
Mainstream dynamically balances precision and re-

call. Fig. 7 delves into the system effects of Mainstream
more deeply. F1-score, recall, and precision are plotted.
The average application frame rate is plotted, showing
how Mainstream dynamically tailors resource usage to
the workload. (Not shown is the varying model accu-
racy.) Optimizing for precision requires careful tuning
of the application frame rate. While higher FPS always

leads to higher recall, it does not always lead to higher
precision. (A high frame rate may only increase false
positives without increasing expected true positives.) For
instance, No-Sharing’s low frame rate and high per-frame
accuracy allows it to have the highest precision of the
three approaches. When given just a few applications,
Mainstream runs specialized models, while throttling the
stream rate to avoid unnecessary false positives. As re-
sources become scarce, many applications begin to share
more of the network.

Mainstream improves upon Max-Sharing even un-
der tight resource constraints. Fig. 8 shows the effect
of Mainstream, Max-Sharing, and No-Sharing on a range
of computational budgets. We average the event F1-scores
across 100 workloads, each with 3 applications. The
right-most points represent the scenario of running on
computational resources equivalent to an Intel® NUC.
With a small workload of three applications, No-Sharing
performs better than Max-Sharing, as it is able to run
expensive models at a high enough frame rate. As we de-
crease the available budget, Max-Sharing’s conservative
sharing approach allows it to be more scalable than No-
Sharing. However, even after the computational budget
is reduced by 83%, Mainstream still improves applica-
tion performance, compared to the overly conservative
Max-Sharing approach.

8.2 Tuned X-Voting improves F1-score
Applications that suffer from low per-frame precision will
generate many false positives. An X-voting approach can
greatly decrease the incidence of false positives, as X
consecutive classifications are needed in order to report a
detection. Too large a value of X can hurt recall, causing
real events to go unreported. By using X-voting and
optimizing the parameter X, Mainstream can improve the
overall average event F1-score.
Fig. 9 shows the effects of X-voting on F1-scores as

X and the number of applications are varied, while total
resources are kept fixed. With just a few concurrent
applications, running at high frame rates, 7-voting and
5-voting yield the highest F1-scores. With more resource

USENIX Association 2018 USENIX Annual Technical Conference 37

Mainstream {F1, Recall, Precision}
Mainstream FPS

Max Sharing {F1, Recall, Precision}
Max Sharing FPS

No Sharing {F1, Recall, Precision}
No Sharing FPS

0 5 10 15 20 25
Number of concurrent apps

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

t F
1

0

5

10

15

20

FP
S

(a) F1-score

0 5 10 15 20 25
Number of concurrent apps

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

t R
ec

al
l

(b) Recall

0 5 10 15 20 25
Number of concurrent apps

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

t P
re

cis
io

n

(c) Precision

Figure 7: The average event F1-score (Fig. 7a), recall (Fig. 7b) and precision (Fig. 7c) across 100 deployed workloads are shown
(solid lines) alongside the average frame-rate across applications (dotted lines). Mainstream dynamically balances recall and precision
to maximize aggregate F1-score. With high numbers of concurrent applications, Mainstream sacrifices small amounts of both
specialization and frame-rate.

50 100 150 200 250 300
Budget

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

t F
1

Mainstream F1
Max Sharing F1
No Sharing F1

FPS
FPS
FPS

0

5

10

15

20
FP

S

Figure 8: Mainstream improves F1-score of workloads under
varying computational budgets. The rightmost points on the X
axis represent the resources available on an Intel® NUC. Even
under heavy resource constraints, there is available capacity for
Mainstream to perform optimizations.

contention, and lower throughput, 3-voting becomes the
best choice as the cost of dropping true positives outweighs
the benefit of reducing false positives for higher values of
X. When resources become too constrained, this approach
is less viable, e.g., 1-voting becomes the best approach at
25 concurrent apps. Fig. 9 also shows the Pareto frontier
of F1-scores achievable across all values of X for a given
number of concurrent applications.

8.3 Mainstream Deployment
We deployed our environmental pollution monitor appli-
cation and nine other concurrent applications using both
Mainstream and a conventional No-Sharing approach for
one week on the hardware setup described in Section 7.
Fig. 10 shows the trace of both approaches on a single
train event sequence, indicating the frames analyzed. A
hit represents a correct classification of the train, a miss
represents an incorrect classification. We see that Main-
stream’s deployment samples the stream more frequently,
yielding many more hits (and misses) than No-Sharing;

0 6 12 18 24 30
Number of concurrent apps

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

t F
1 Pareto Frontier

7-voting
5-voting
3-voting
1-voting

Figure 9: X-voting increases precision and helps Mainstream
achieve a higher F1-score, but only if frame rate is high enough
to avoid hurting recall. Thus, the effects vary by the level of
resource contention. The Pareto frontier shows the F1-scores
achievable given the dynamic selection of an optimal X-voting
scheme for the resource scenario.

the result, though, is that Mainstream detects the train
event earlier and more confidently.

We control the false positive rate with 2-voting, requir-
ing Mainstream to have two positive samples before an
event is classified. The false positive rate of the Train
video drops from 0.028 to 0.00056. No-Sharing and
Mainstream achieve a 0 and a 0.00056 false positive rate,
respectively. In the analyzed deployment in Fig 10, we see
that Mainstream still detects the train easily and quickly.

9 Additional Related Work

Several recent systems have attempted to tackle the prob-
lem of optimizing execution of visual computing pipelines.

VideoStorm [48] is a video analytics system for large-
scale clusters and workloads. It analyzes resource use and
application-goal-based metrics as a function of tunable
parameters of the analytics pipelines, building models
for each application independently. It uses these models

38 2018 USENIX Annual Technical Conference USENIX Association

0 4 8 12
Time elapsed (s)

0 4 8 12
Time elapsed (s)

Smoke stack
leaves view Mainstream miss

Mainstream hit
No Sharing miss
No Sharing hit

Figure 10: Timeline of Mainstream running a train detector app
with 9 concurrent applications. Our goal is to detect the train as
early as possible, before the smoke stack is out of view (end of
window represented by the dotted line). Mainstream detects the
train earlier and more confidently than No-Sharing.

to allocate resources and select parameters for deployed
applications on a target platform, in order to maximize
application quality metrics. VideoStorm takes a black-box
view of the applications, and assumes that quality and
resource consumption of co-deployed applications are
independently determined. Therefore, it cannot take into
account computation sharing, or optimize the sharing vs.
degree of specialization tradeoff. In contrast, Mainstream
takes a white-box approach to modeling application qual-
ity, and can explicitly tune computation sharing to improve
application quality metrics. Compared to VideoStorm,
Mainstream sacrifices some generality to solve the joint
optimization problem.
MCDNN [18] introduces a static approach to sharing

DNN computation, in which each application developer
independently determines their amount of model special-
ization. MCDNN opportunistically shares any identical
unspecialized layers between applications. In contrast,
Mainstream’s training and scheduling components allow
late binding and jointly-optimized selection of the degrees
of specialization at run time, when resource availability
and co-deployed tasks are known.
Inference serving systems. Mainstream is an infer-

ence serving system for running neural networks on
resource-constrained nodes. Other inference serving sys-
tems include Clipper [12], NoScope [26], and TensorFlow
Serving [1]. Like Mainstream, these systems optimize for
latency and throughput gains. Clipper caches results from
multiple models, dynamically chooses from the results,
and optimizes the batch size. NoScope replaces expen-
sive neural networks for object detection with cheaper
difference detectors and specialized models. TensorFlow
Serving increases throughput with batching and hardware
acceleration. LASER [4] and Velox [11] are inference
serving systems for non-DNN models. LASER deploys
linear models while Velox deploys personalized prediction
algorithms using Apache Spark.
Unlike Mainstream, these inference serving systems

do not share computation between independently trained

models. They also target cluster environments. Main-
stream targets edge devices with limited resources, where
achieving the right degree of DNN computation sharing
is particularly important, though such sharing would also
be valuable in large data centers.

Reducing DNN inference time. Approaches to re-
ducing DNN inference time for vision applications can
be broadly classified into those that reduce model preci-
sion [16, 50, 10, 9, 7, 23, 39], use efficient network architec-
tures [20, 24], use anytime prediction methods [22, 21], or
employ model compression and sparsification [17, 33, 46].
All of these methods are orthogonal to Mainstream’s adap-
tive DNN computation sharing technique, but share its
goal of selecting the right trade-off between per-frame
quality and frame throughput.

Multi-task networks. Multi-task learning [6, 49, 5, 36,
35, 34, 27, 38] is aML approach in which a single model is
trained to perform multiple tasks. Using multiple tasks to
train a single model helps achieve better accuracy because
of better generalization and complementary information [6,
41]. In the context of DNNs, a multi-task network can
have a varying number of shared layers across tasks and
task-specific layers [36, 35]. Multi-task learning assumes
that all of the tasks are known a priori, and that training
data for all of the tasks is available for use in a single
training process. In contrast, Mainstream allows each
task to be developed, trained, and deployed independently,
and avoids the need to share or expose proprietary or
privacy-sensitive training data between task developers.
Note that one can run a multi-task network as a single
large application in Mainstream.

10 Conclusion

Mainstream adaptively orchestrates DNN stem-sharing
among concurrent video processing applications sharing
the limited resources on an edge device, resulting in much
higher aggregate application quality. Experiments with
several event detection tasks confirm that Mainstream
significantly increases overall event F1-score relative to
current approaches over a range of concurrency levels.

11 Acknowledgments

We thank the member companies of the PDL Consor-
tium (Alibaba, Broadcom, Dell EMC, Facebook, Google,
HPE, Hitachi, IBM Research, Intel, Microsoft, MongoDB,
NetApp, Oracle, Salesforce, Samsung, Seagate, Toshiba,
Two Sigma, Veritas and Western Digital) for their interest,
insights, feedback, and support. This work is supported in
part by funding from Intel as part of the Intel STC for Vi-
sual Cloud Systems (ISTC-VCS). We also thank Michael
Sussman for help in developing statistical models.

USENIX Association 2018 USENIX Annual Technical Conference 39

References

[1] Tensorflow Serving. https://www.tensorflow.org/

serving/.
[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Leven-
berg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vié-
gas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. URL https:

//www.tensorflow.org/. Software available from ten-
sorflow.org.

[3] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,
B. Varadarajan, and S. Vijayanarasimhan. YouTube-8M:
A large-scale video classification benchmark. CoRR,
abs/1609.08675, 2016. URL http://arxiv.org/abs/

1609.08675.
[4] D. Agarwal, B. Long, J. Traupman, D. Xin, and L. Zhang.

Laser: A scalable response prediction platform for online
advertising. In Proceedings of the 7th ACM International
Conference on Web Search and Data Mining, WSDM
’14. ACM, 2014. URL http://doi.acm.org/10.1145/

2556195.2556252.
[5] K. Ahmed and L. Torresani. Branchconnect: Large-scale

visual recognition with learned branch connections. CoRR,
abs/1704.06010, 2017. URL http://arxiv.org/abs/

1704.06010.
[6] R. Caruna. Multitask learning. In Learning to learn, pages

95–133. Springer, 1998.
[7] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and

Y. Chen. Compressing neural networks with the hashing
trick. In Proceedings of the 32nd International Confer-
ence on International Conference on Machine Learning
- Volume 37, ICML’15. JMLR.org, 2015. URL http:

//dl.acm.org/citation.cfm?id=3045118.3045361.
[8] F. Chollet et al. Keras. https://keras.io, 2015.
[9] M. Courbariaux and Y. Bengio. Binarynet: Training deep

neural networks with weights and activations constrained
to +1 or -1. Advances in Neural Information Processing
Systems, 2016.

[10] M. Courbariaux, Y. Bengio, and J. David. Binaryconnect:
Training deep neural networks with binary weights during
propagations. 2015.

[11] D. Crankshaw, P. Bailis, J. E. Gonzalez, H. Li, Z. Zhang,
M. J. Franklin, A. Ghodsi, and M. I. Jordan. The missing
piece in complex analytics: Low latency, scalable model
management and serving with Velox. In CIDR, 2015.

[12] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin,
J. E. Gonzalez, and I. Stoica. Clipper: A low-
latency online prediction serving system. In 14th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), Boston, MA, 2017.
USENIX Association. ISBN 978-1-931971-37-9.

URL https://www.usenix.org/conference/nsdi17/

technical-sessions/presentation/crankshaw.
[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database.
In CVPR09, 2009.

[14] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
from a single image using a multi-scale deep network. In
Advances in neural information processing systems, pages
2366–2374, 2014.

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Region-
based convolutional networks for accurate object detection
and segmentation. IEEE transactions on pattern analysis
and machine intelligence, 38(1):142–158, 2016.

[16] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev. Compressing
deep convolutional networks using vector quantization.
CoRR, abs/1412.6115, 2014. URL http://arxiv.org/

abs/1412.6115.
[17] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A.

Horowitz, and W. J. Dally. Eie: Efficient inference en-
gine on compressed deep neural network. SIGARCH
Comput. Archit. News, 44(3):243–254, June 2016. ISSN
0163-5964. doi: 10.1145/3007787.3001163. URL
http://doi.acm.org/10.1145/3007787.3001163.

[18] S. Han, H. Shen,M. Philipose, S. Agarwal, A.Wolman, and
A. Krishnamurthy. MCDNN: An Approximation-Based
Execution Framework for Deep Stream Processing Under
Resource Constraints. In Conference MobiSys’16 The
14th Annual International Conference on Mobile Systems,
Applications, and Services, MobieSys ’16. ACM, 2016.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 770–778, 2016.

[20] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam. Mo-
bilenets: Efficient convolutional neural networks formobile
vision applications. CoRR, abs/1704.04861, 2017. URL
http://arxiv.org/abs/1704.04861.

[21] H. Hu, D. Dey, J. A. Bagnell, and M. Hebert. Anytime
neural networks via joint optimization of auxiliary losses.
arXiv preprint arXiv:1708.06832, 2017.

[22] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten,
and K. Q. Weinberger. Multi-scale dense convolu-
tional networks for efficient prediction. arXiv preprint
arXiv:1703.09844, 2017.

[23] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio. Quantized neural networks: Training neural
networkswith low precisionweights and activations. CoRR,
2016. URL http://arxiv.org/abs/1609.07061.

[24] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and <1mb model size. 2016.
URL http://arxiv.org/abs/1602.07360.

[25] Jodoin, J.-P., Bilodeau, G.-A., and N. Saunier. Urban
tracker: Multiple object tracking in urban mixed traffic.

40 2018 USENIX Annual Technical Conference USENIX Association

https://www.tensorflow.org/serving/
https://www.tensorflow.org/serving/
https://www.tensorflow.org/
https://www.tensorflow.org/
http://arxiv.org/abs/1609.08675
http://arxiv.org/abs/1609.08675
http://doi.acm.org/10.1145/2556195.2556252
http://doi.acm.org/10.1145/2556195.2556252
http://arxiv.org/abs/1704.06010
http://arxiv.org/abs/1704.06010
http://dl.acm.org/citation.cfm?id=3045118.3045361
http://dl.acm.org/citation.cfm?id=3045118.3045361
https://keras.io
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
http://doi.acm.org/10.1145/3007787.3001163
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1609.07061
http://arxiv.org/abs/1602.07360

In IEEE Winter conference on Applications of Computer
Vision (WACV14), March 2014.

[26] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia.
Noscope: Optimizing neural network queries over video
at scale. In Proceedings of the VLDB Endowment, Vol. 10,
No. 11, 2017.

[27] I. Kokkinos. Ubernet: Training a ’universal’ convolu-
tional neural network for low-, mid-, and high-level vi-
sion using diverse datasets and limited memory. CoRR,
abs/1609.02132, 2016. URL http://arxiv.org/abs/

1609.02132.
[28] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object

representations for fine-grained categorization. In 4th
International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.

[30] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropaga-
tion applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

[31] T. J. Lee, J. Gottschlich, N. Tatbul, E. Metcalf, and
S. Zdonik. Precision and recall for range-based anomaly
detection. SysML, Feb 2018.

[32] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B.
Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. Microsoft COCO: common objects in context.
pages 740–755", 2014.

[33] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy.
Sparse convolutional neural networks. In IEEE Conference
on Computer Vision and Pattern Recognition, 2015.

[34] M. Long and J. Wang. Learning multiple tasks with deep
relationship networks. CoRR, abs/1506.02117, 2015. URL
http://arxiv.org/abs/1506.02117.

[35] Y. Lu, A. Kumar, S. Zhai, Y. Cheng, T. Javidi, and R. S.
Feris. Fully-adaptive feature sharing in multi-task networks
with applications in person attribute classification. CVPR,
2016. URL http://arxiv.org/abs/1611.05377.

[36] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. Cross-
stitch Networks for Multi-task Learning. In CVPR, 2016.

[37] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning
and transferring mid-level image representations using
convolutional neural networks. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2014.

[38] R. Ranjan, V. M. Patel, and R. Chellappa. Hyperface: A
deepmulti-task learning framework for face detection, land-
mark localization, pose estimation, and gender recognition.
arXiv preprint arXiv:1603.01249, 2016.

[39] M.Rastegari, V.Ordonez, J. Redmon, andA. Farhadi. Xnor-
net: Imagenet classification using binary convolutional
neural networks. In ECCV, 2016.

[40] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson.
CNN features off-the-shelf: An astounding baseline for
recognition. In IEEE Conference on Computer Vision and

Pattern Recognition, CVPR Workshops 2014, Columbus,
OH, USA, June 23-28, 2014, pages 512–519, 2014. doi:
10.1109/CVPRW.2014.131. URL http://dx.doi.org/

10.1109/CVPRW.2014.131.
[41] S. Ruder. An overview of multi-task learning in deep

neural networks. abs/1706.05098, 2017. URL http:

//arxiv.org/abs/1706.05098.
[42] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[43] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In Advances
in neural information processing systems, pages 568–576,
2014.

[44] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z.Wojna.
Rethinking the inception architecture for computer vision.
In CVPR, 2016.

[45] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deep-
face: Closing the gap to human-level performance in face
verification. In CVPR, pages 1701–1708, Washington,
DC, USA, 2014. IEEE Computer Society. ISBN 978-
1-4799-5118-5. doi: 10.1109/CVPR.2014.220. URL
http://dx.doi.org/10.1109/CVPR.2014.220.

[46] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning
structured sparsity in deep neural networks. Advances
in Neural Information Processing Systems, 2016. URL
http://arxiv.org/abs/1608.03665.

[47] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How
transferable are features in deep neural networks? In Pro-
ceedings of the 27th International Conference on Neural
Information Processing Systems, NIPS’14, pages 3320–
3328, Cambridge, MA, USA, 2014.MIT Press. URL http:

//dl.acm.org/citation.cfm?id=2969033.2969197.
[48] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose,

P. Bahl, and M. J. Freedman. Live Video Analytics at
Scale with Approximation and Delay-Tolerance. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), NSDI ’17, 2017.

[49] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark
detection by deep multi-task learning. In ECCV, 2014.

[50] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou.
Dorefa-net: Training low bitwidth convolutional neural
networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

[51] S. Zilberstein. Using anytime algorithms in intelligent
systems. In AI Magazine, 17(3):73-83, 1996.

USENIX Association 2018 USENIX Annual Technical Conference 41

http://arxiv.org/abs/1609.02132
http://arxiv.org/abs/1609.02132
http://arxiv.org/abs/1506.02117
http://arxiv.org/abs/1611.05377
http://dx.doi.org/10.1109/CVPRW.2014.131
http://dx.doi.org/10.1109/CVPRW.2014.131
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
http://dx.doi.org/10.1109/CVPR.2014.220
http://arxiv.org/abs/1608.03665
http://dl.acm.org/citation.cfm?id=2969033.2969197
http://dl.acm.org/citation.cfm?id=2969033.2969197

