
A Single-Shot
Generalized Device
Placement for Large
Dataflow Graphs

Yanqi Zhou, Sudip Roy,

Amirali Abdolrashidi, Daniel Lin-Kit Wong,

Peter Ma, Qiumin Xu, Azalia Mirhoseini, and

James Laudon

Google

Abstract—With increasingly complexneural networkarchitecturesandheterogeneous

devicecharacteristics, findinga reasonablegraphpartitioninganddeviceplacement

strategy ischallenging. Therehavebeenprior attemptsat learnedapproaches for solving

deviceplacement, theseapproachesarecomputationally expensive, unable tohandle large

graphsconsisting over 50000nodes, anddonotgeneralizewell tounseengraphs. To

addressall these limitations,weproposeanefficient single-shot, generalizeddeepRL

method (SGDP)basedonascalable sequential attentionmechanismover a graphneural

network that is transferable tonewgraphs.Onadiverse set of representativedeep learning

models, ourmethodonaverageachieves20% improvementover humanplacementand18%

improvementover theprior artwith15� fasterconvergence.Weare thefirst todemonstrate

super humanperformanceon8-layer recurrent neural network languagemodel and8-layer

GNMTconsisting of over 50000nodes, on8-GPUs.Weprovide rationalesandsensitivity

studyonmodel architectureselections.

& NEURAL NETWORKS HAVE demonstrated rema-

rkable scalability–improved performance can

usually be achieved by training a larger model

on a larger dataset.6,7 Training such large models

efficiently while meeting device constraints, like

memory limitations, necessitate partitioning of

the underlying dataflow graphs for the models

across multiple devices. However, devising a

good partitioning and placement of the dataflow

graphs requires deep understanding of the

model architecture, optimizations performed by

Digital Object Identifier 10.1109/MM.2020.3015188

Date of publication 7 August 2020; date of current version

1 September 2020.

Theme Article: Machine Learning for SystemsTheme Article: Machine Learning for Systems

26
0272-1732 � 2020 IEEE Published by the IEEE Computer Society IEEE Micro

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 07,2024 at 19:37:02 UTC from IEEE Xplore. Restrictions apply.

domain-specific compilers, as well as the device

characteristics, and is therefore extremely hard

even for experts.

Graph partitioning and device placement can

be specified through a programming interface

or through compiler optimizations. ML practi-

tioners often rely on their domain knowledge to

determine a reasonable partitioning and device

mapping for computational graphs. For example,

programmers can manually assign devices to

operations through a programming interface

such as Tensorflow and Mesh-Tensorflow. How-

ever, relying solely on the model architecture

while ignoring the effect of the partitioning on

subsequent compiler optimizations like opera-

tion scheduling can lead to suboptimal place-

ments and consequently under-utilization of

available devices. Alternatively, a compiler can

apply heuristics to annotate graphs and assign

devices to Tensors or operations. The heuristics

not only lead to suboptimal configurations but

also need to be constantly modified to accom-

modate new cases arising from previously

unseen model architectures.

The goal of an automatic device placement is

to find the optimal assignment of operations to

devices such that the end-to-end execution time

for a single step is minimized and all device con-

straints like memory limitations are satisfied.

Since this objective function is nondifferentiable,

prior approaches1,3,11 have explored solutions

based on reinforcement learning (RL). However,

these RL policies are impractical to be used in a

real production compiler for several reasons.

First, they are designed for small tomedium sized

computation graphs and do not demonstrate

strong performance on large graphswhere device

placement is truly needed. Second, these RL poli-

cies are usually not transferable and require

training a new policy from scratch for each indi-

vidual graph. This makes such approaches

impractical due to the significant amount of com-

pute required for the policy search itself, at times

offsetting gainsmade by the reduced step time.

In this article, we propose an end-to-end,

single-shot deep RL method for device place-

ment (SGDP) where the learned policy is gener-

alizable to new graphs. For the speed of

training, we propose a single-shot placement

using a re-engineered Transformer-XL network.

Instead of generating placement decisions one

node a time,1,3,16 the policy network generates

decisions for the entire graph in a single shot

fashion. In order to handle large graphs consist-

ing of over 50 000 nodes, we use a Transformer-

XL based on segmented recurrent attention10,18

that partitions the input sequences and gener-

ates placement decisions one sequence each of

the time while using caching to track interse-

quence dependencies. The segmented Trans-

former-XL removes any hard constraints such

as hierarchical grouping of operations3 or colo-

cation heuristics to reduce the placement com-

plexity.1 For generalization, we apply a graph

neural network (GNN) to encode operation fea-

tures and dependencies into a trainable graph

representation, and learn the graph representa-

tion end-to-end with the placement policy

decisions.

Both our graph-embedding network and place-

ment network can be jointly trained in an end-to-

end fashion using a

supervised reward,

without the need to

manipulate the loss

functions at multiple

levels. We empiri-

cally show that the

network learns flexi-

ble placement poli-

cies at a per-node

granularity and can

scale to problems

over 50 000 nodes.

By transferring the

learned graph emb-

eddings and place-

ment policies, we are

able to achieve faster

convergence and thus use less resources to obtain

high-quality placements.

Our contributions can be summarized as

follows.

1) An end-to-end deep RL framework to auto-

matically learn graph partitioning and device

placement in a single-shot fashion. Our

method is demonstrated 15� faster than the

prior SoTA based on a hierarchical LSTM

model.1,3

We empirically show

that the network learns

flexible placement

policies at a per-node

granularity and can

scale to problems over

50 000 nodes. By

transferring the learned

graph embeddings

and placement

policies, we are able to

achieve faster

convergence and thus

use less resources to

obtain high-quality

placements.

September/October 2020 27
Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 07,2024 at 19:37:02 UTC from IEEE Xplore. Restrictions apply.

2) A scalable placement network with an effi-

cient recurrent attention mechanism, which

eliminates the need for an explicit grouping

stage before placement. Our method handles

large graphs consisting over 50 000 nodes

and is the first to demonstrate superhuman

placement performance on large problems

such as 8-layer GMNT and 8-layer recurrent

neural network language model (RNNLM).

3) An end-to-end device placement network

that can generalize to arbitrary and held-out

graphs. This is enabled by jointly learning a

transferable GNN along with the placement

network.

4) Superior empirical performance over a wide

set of important workloads in computer vision,

speech, and NLP (InceptionV3, AmoebaNet,

RNNs, GNMT, Transformer-XL,10 WaveNet).

5) Detailed rationales and sensitivity studies on

model architecture selections for the policy

network. Compared against LSTMs, MLPs,

and graph attention networks (GANs).20

RELATED WORK

Model-Level Parallelism

Model-level parallelism partitions a neural net-

work model among multiple devices and each

device is responsible for the weights updates of

the assigned operations or layers. Model-level

parallelism enables training large models exceed-

ing the size constraint of the device memory.

There are different forms of model-level paral-

lelism andmany of them are supported at the pro-

gramming language level. Mesh-TensorFlow13 is a

language that built on top of Tensorflow that pro-

vides a general class of distributed tensor compu-

tations. While data-parallelism can be viewed as

splitting tensors and operations along the “batch”

dimension, in Mesh-TensorFlow the user can

specify any tensor-dimensions to be split across

any dimensions of a multidimensional mesh of

processors. FlexFlow2 introduces SOAP, a more

comprehensive search space of parallelization

strategies for DNNs which allows parallelization

of a DNN in the Sample, Operator, Attribute, and

Parameter dimensions. It uses guided random-

ized search to find a parallelization strategy.

GPipe12 proposed pipeline parallelism, by

automatically splitting a minibatch of training

examples into smaller micro-batches. By pipe-

lining the execution across micro-batches, accel-

erators can operate in parallel. PipeDream19

introduces pipeline parallelism with more flexi-

bility, allowing gradient updates of multiple mini-

batches to happen in parallel. However, this

introduces the staleness and consistency issue

for weigh updates. In addition, both GPipe and

PipeDream partition a model at the granularity of

layers instead of operations. Instead of proposing

different parallelism strategies or programming

primitives, our work focuses on a general deep

RL algorithmic solution for automating device

placement at operation granularity.

Automatic Device Placement

RL has been used for device placement of a

given dataflow graph1 and demonstrated runtime

reduction over human crafted placement and

conventional heuristics. For improved scalability,

a hierarchical device placement (HDP) strategy3

has been proposed that clusters operations into

groups before placing the operation groups onto

devices. Spotlight11 applies proximal policy opti-

mization (PPO) and cross-entropy minimization

to lower training overhead. Both HDP and Spot-

light rely on LSTM controllers that are difficult to

train and struggle to capture very long-term

dependencies over large graphs. In addition, both

methods are restricted to process only a single

graph at a time, and cannot generalize to arbitrary

andheld-out graphs. Placeto16 represents the first

attempt to generalize device placement using a

graph embedding network. But like HDP, Placeto

also relies on hierarchical grouping and only gen-

erates placement for one node at each time step.

Our approach leverages a recurrent attention

mechanism and generates the whole graph place-

ment at once. This significantly reduces the train-

ing time for the controller. We also demonstrate

the generalization ability of SGDP over a wider set

of important workloads.

Compiler Optimization

REGAL8,9 uses deep RL to optimize the execu-

tion cost of computation graphs in a static com-

piler. The method leverages the policy’s ability

to transfer to new graphs to improve the quality

of the genetic algorithm for the same objective

budget. However, REGAL does not show strong

Machine Learning for Systems

28 IEEE Micro

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 07,2024 at 19:37:02 UTC from IEEE Xplore. Restrictions apply.

empirical results on large graphs, especially

graphs consisting of over 50 000 nodes such as

8-layer GNMT and 8-layer RNNLM. In addition,

REGAL relies on a performance model to app-

roximate the rewards, while we demonstrate

superior performance using real machine meas-

urements in an online learning fashion.

END-TO-END PLACEMENT POLICY
Given a dataflow graph GðV;EÞ where V rep-

resents atomic computational operations (ops)

and E represents the data dependence, our goal

is to learn a policy p : G 7! D that assigns a place-

mentD 2 D for all the ops in the given graph G 2
G, to maximize the reward rG;D defined based on

the runtime. D is the allocated devices that can

be a mixture of CPUs and GPUs. In this article,

we represent policy pu as a neural network

parameterized by u.

Unlike prior works that focus on a single

graph only, the RL objective in GDP is defined to

simultaneously reduce the expected runtime of

the placements over a set of N dataflow graphs

JðuÞ ¼ EG�G;D�puðGÞ½rG;D�

� 1

N

X

G

ED�puðGÞ½rG;D�: (1)

In the following, we refer to the case when

N ¼ 1 as individual training and the case when

N > 1 as batch training. We optimize the objec-

tive above using PPO15 for improved sample

efficiency.

Figure 1 shows an overview of the proposed

end-to-end device placement network. Our pro-

posed policy network pu consists a graph

embedding network that learns the graphical

representation of any dataflow graph, and a

placement network that learns a placement

strategy over the given graph embeddings. The

two components are jointly trained in an end-to-

end fashion. The policy pðajGÞ is applied to make

a set of decisions at each node. These decisions,

denoted as av for each v 2 V across all nodes,

form one action a ¼ fav2V g. One decision corre-

sponds to playing one arm of a multibandit prob-

lem, and specifying the entire a corresponds to

playing several arms together in a single shot.

Note the architecture is designed to be invariant

over the underlying graph topology, enabling us

to apply the same learned policy to a wide set of

input graphs with different structures.

Graph Embedding Network

We leverage GNNs4,5 to capture the topologi-

cal information encoded in the dataflow graph.

Most graph embedding frameworks are inher-

ently transductive and can only generate embed-

dings for a given fixed graph. These transductive

methods do not efficiently extrapolate to handle

unseen nodes (e.g., in evolving graphs), and can-

not learn to generalize to unseen graphs.

GraphSAGE4 is an inductive framework that lev-

erages node attribute information to efficiently

generate representations on previously unseen

data. While our proposed framework is generic,

Figure 1. Overview of SGDP: An end-to-end placement network that combines graph embedding and

sequential attention. N: Number of nodes. h: Hidden size. d: Number of devices.

September/October 2020 29
Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 07,2024 at 19:37:02 UTC from IEEE Xplore. Restrictions apply.

we adopt the feature aggregation scheme pro-

posed in GraphSAGE to model the dependencies

between the operations and build a general, end-

to-end device placement method for a wide set

of dataflow graphs.

In SGDP, nodes and edges in the dataflow

graph are represented as the concatenation of

their meta features (e.g., operation type, output

shape, adjacent node ids) and are further

encoded by the graph embedding network into a

trainable representation. The graph embedding

process consists of multiple iterations, and the

computation procedure for the lth iteration can

be outlined as follows.

First, each node v 2 V aggregates the feature

representations of its neighbors, fhðlÞ
u ; 8u 2

NðvÞg, into a single vector h
ðlÞ
N ðvÞ. This aggrega-

tion outcome is a function of all previously gen-

erated representations, including the initial

representations defined based on the input node

features. In this article, we use the following

aggregation function with max pooling:

h
ðlÞ
N ðvÞ ¼ maxðsðW ðlÞhðlÞ

u þ bðlÞÞ; 8u 2 N ðvÞÞ
(2)

where ðW ðlÞ, bðlÞÞ define an affine transform and s

stands for the sigmoid activation function. We

then concatenate the node’s current representa-

tion, hðlÞ
v , with the aggregated neighborhood vec-

tor, h
ðlÞ
N ðvÞ, and feed this concatenated vector

through a fully connected layer fðlþ1Þ

hðlþ1Þ
v ¼ f ðlþ1ÞðconcatðhðlÞ

v ; h
ðlÞ
N ðvÞÞÞ: (3)

Different from GraphSAGE, parameters in our

graph embedding network are trained jointly

with a placement network via stochastic gradi-

ent descent with PPO, in a supervised fashion, as

described in the “End-to-End Placement Policy”

section. That is, we replace the unsupervised

loss with our task-specific objective.

Placement Network

The GNN works as a feature aggregation net-

work that learns a trainable feature representa-

tion for the computational graph, we still need a

policy network that produces actions on a per

node basis. Given hv’s, the policy network produ-

ces av’s through conditionally independent pre-

dictions, where the prediction for one node v

does not depend on the prediction of other nodes

pðajGÞ ¼
Y

v

pðavjGÞ ¼
Y

v

pðavjfðhvÞÞ: (4)

Next, we discuss the selection of a proper neu-

ral network model to create a policy network.

Multilayer Perceptron (MLPs) While f can

be represented using MLPs, where the MLPs is

shared across all nodes for prediction the place-

ment output distributions. However, MPLs lack a

dependence tracking mechanism across nodes.

In practise, the placement of one node can be

determined by the placement of another node,

where the placed node may consume a large size

of data produced by the other node.

LSTM The conventional LSTMmodels proposed

for language tasks usually target a shorter

sequence length. For example, in a language

task, a typical sequence length is between a few

hundred to a thousand. However, in the device

placement problem, models truly needs device

placement can consists of over 50 000 of nodes.

HDP3 has been proposed to address this issue,

however, the proposed grouper network comes

with limited flexibility and generality. For exam-

ple, the grouper network leverages an aggre-

gated feature representation by averaging

feature vectors for nodes within the same group.

Figure 2. Normalized runtime to SGDP-one (the

lower the better). Comparison of different policy

network architectures: MLPs consists of graph

embedding network with MLPs. GATs incorporates

an attention of neighbor nodes into a GNN. SGDP-

one is our method. Results for GATs on all 8-layer

input graphs, GNMT, and AmoebaNet are missing

as GATs fails to generate valid placements.

Machine Learning for Systems

30 IEEE Micro

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 07,2024 at 19:37:02 UTC from IEEE Xplore. Restrictions apply.

The nondifferentiable grouping procedure pre-

vents training the graph-embedding and place-

ment networks end-to-end.

Graph Attention An attention network can

learn internode dependence and the relative

importance of dependencies across an entire

graph. An intuitive way is to incorporate an atten-

tion mechanism into the GNN to enable nodes to

attend over their neighborhood’s features, follow-

ing a self-attention strategy. GATs20 has several

strengths: first, it is efficient and is parallelizable

across node-neighbor pairs; second, it can specify

arbitrary weights to the neighbors; third, the

model can generalize to completely unseen

graphs. However, GATs only supports local atten-

tion, as contrary to the long-term global attention

using a conventional Transformer network. More-

over, it has limited scalability that cannot handle

large graphs consisting of over 10 k’s of nodes.

Our Method As we increase the input graph

size, the complexities of a GNN and an attention

network can scale up. However, due to the reduc-

tion used in the aggregation layers in GraphSAGE,

the complexity usually scales linearly with the

number of nodes. But for an attention network,

the complexity is OðN2Þ. Therefore, designing a

more scalable attention network is critical to

large input graphs.

We propose to use a transformer-based atten-

tive network to generate operation placements

in an end-to-end fashion. As the graph embed-

ding already contains spatial (topological) infor-

mation for each node, we remove the positional

embedding in the original transformer to pre-

vent the model from overfitting node identifica-

tions. To capture long-term dependencies

efficiently among a large set of nodes, we adopt

segment-level recurrence introduced in Trans-

former-XL,10,17 where hidden states computed

for the previous set of nodes are cached (with

gradient flows disabled) and reused as an

extended context during the training of the next

segment. This reduces the complexity to

OðN2=kÞ, where k is the number of segments.

Besides achieving extra long context than a

GAN, we empirically find the segment-level recur-

rent attention much faster than a conventional

LSTM-based GNMT model. In our experimental

evaluation, we compare both the performance

and speedup of our placement network with that

of the LSTM-based HDP.

To improve policy optimization for the big

search space [OðdNÞ], where d is the number of

devices and N is the number of nodes, we apply

an additional mask attention to the last layer of

feature map generated by the recurrent atten-

tion policy network. The generated actions mask

is position-wise multiplied with the actions to

selectively choose nodes to place. Intuitively,

this enables selecting important ops in the graph

to change placements while minimizing the cuts

for the entire graph.

EXPERIMENT

Experimental Setup

Workloads: We evaluate SGDP using the

computational graphs of six diverse architectures

from different domains. To create a larger set of

workloads, we vary architectural parameters like

the number of layers for each of these workloads.

All our workloads are implemented in TensorFlow.

Further details about the graphs is in Appendix A.

Runtime Measurement: For placement task,

where TensorFlow provides an API for device

assignment, our experiments are evaluated on

actual hardware with configuration of one Intel

Broadwell CPU and up to eight Nvidia P100 GPUs.

Baselines: We choose three different base-

lines against which we compare the performance

of SGDP along various metrics in the “Perfor-

mance on Individual Graphs” section. They are

the default heuristics-based optimizations used

in TensorFlow (METIS), a human-expert solution,

and finally solutions found using a learning

based strategy like HDP.3 For sensitivity study

in Section refsubsec:sensitivity, we compare

against MPLs and GATs.20

Performance on Individual Graphs

We evaluate SGDP by training the model sepa-

rately on six important deep learning computa-

tion graphs, including RNN Language Modeling,

GNMT, Transformer-XL, Inception, AmoebaNet,

and WaveNet. We name this approach SGDP-one.

Since TensorFlow provides an API for assigning

operation placement, all reported measurements

for placement task are on real hardware. As

September/October 2020 31
Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 07,2024 at 19:37:02 UTC from IEEE Xplore. Restrictions apply.

shown in Table 1, SGDP-one consistently outper-

forms human expert placement (HP), TensorFlow

METIS placement, and HDP. Overall, SGDP-one

achieves on average 20.5% and 18.2% run time

reduction across the evaluated 14 graphs, com-

pared to HP and HDP, respectively. Importantly,

with the efficient end-to-end single-shot place-

ment, SGDP-one has a 15� speedup in conver-

gence time of the placement.

Scalability Analysis: SGDP is designed in a way

to scale up to extremely large graphs, consisting of

over 80 000 nodes (8-layer GNMT). Therefore,

unlike any of the prior works including HDP,3

REGAL,9 and Placeto,16 we can demonstrate super

human performance on large graphs such as 8-

layer GNMT (21.7%/36.5% better than HP/HDP)

and 8-layer RNNLM (3.8%/58.1% better than HP/

HDP). For all of the related SoTA work, Placeto16

and REGAL9 do not provide any results on 8-layer

RNNLMor 8-layer GNMT (more than 50000nodes).

HDP3 reports inferior performance on 8-layer

RNNLMand 8-layer GNMT than human placement.

Sensitivity Study on Model Architectures

We compare our method with two alternative

architectures (MLPs and GATs), as explained in

“Placement Network” section. An LSTM-based

HDP has been compared in Table 1 and we will

leave it out in this section. SGDP-one consis-

tently outperforms both MLPs and GATs by an

average of 10% and 7%. (We only include valid

placements for GATs). GATs fails to generate

valid placements for large graphs consisting of

over 10 000 nodes, such as 8-layer RNNLM, 2-

layer GNMT, 8-layer Transformer-XL, and Amoe-

baNet. The results imply that SGDP yields better

performance with an attention network, as com-

pared to MLPs, and provides better scalability

with a decoupled segmented attention network,

as compared to GATs.

Table 1. Runtime comparison between SGDP-one, human expert, TensorFlow METIS, and HDP on six graphs (RNNLM, GNMT,

Transformer-XL, Inception, AmoebaNet, and WaveNet). Search speedup is the policy network training time speedup compared to

HDP (reported values are averages of six runs).

Model (#devices)
SGDP-one

(s)

HP

(s)

METIS

(s)

HDP

(s)

Runtime speedup over HP /

HDP

Search speedup over

HDP

2-layer RNNLM (2) 0.173 0.192 0.355 0.191 9.9% / 9.4% 2.95x

4-layer RNNLM (4) 0.210 0.239 0.503 0.251 13.8% / 16.3% 1.76x

8-layer RNNLM (8) 0.320 0.332 OOM 0.764 3.8% / 58.1% 27.8x

2-layer GNMT (2) 0.301 0.384 0.344 0.327 27.6% / 14.3% 30x

4-layer GNMT (4) 0.350 0.469 0.466 0.432 34% / 23.4% 58.8x

8-layer GNMT (8) 0.440 0.562 OOM 0.693 21.7% / 36.5% 7.35x

2-layer Transformer-XL

(2)
0.223 0.268 0.37 0.262 20.1% / 17.4% 40x

4-layer Transformer-XL

(4)
0.230 0.27 OOM 0.259 17.4% / 12.6% 26.7x

8-layer Transformer-XL

(8)
0.350 0.46 OOM 0.425 23.9% / 16.7% 16.7x

Inception (2) b32 0.229 0.312 OOM 0.301 26.6% / 23.9% 13.5x

Inception (2) b64 0.423 0.731 OOM 0.498 42.1% / 29.3% 21.0x

AmoebaNet (4) 0.394 0.44 0.426 0.418 26.1% / 6.1% 58.8x

2-stack 18-layer WaveNet

(2)
0.317 0.376 OOM 0.354 18.6% / 11.7% 6.67x

4-stack 36-layer WaveNet

(4)
0.659 0.988 OOM 0.721 50% / 9.4% 20x

GEOMEAN - - - - 20.5% / 18.2% 15x

Machine Learning for Systems

32 IEEE Micro

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 07,2024 at 19:37:02 UTC from IEEE Xplore. Restrictions apply.

Generalization

SGDPenables the training ofmultiple heteroge-

neous graphs in a single batch (GDP-batch). We

empirically show that GDP-batch generates better

placements for many workloads such as Trans-

former-XL (7.6%), WaveNet (15%), and 8-layer

GNMT (8%). Table 2 compares the run time of 11

tasks using SGDP-batch. SGDP-batch yields

slightly better runtime compared to SGDP-one in

majority of the tasks, while being only slightly

worse on AmoebaNet. Compared to training

graphs separately, SGDP-batch reduces network

parameters and enables transfer learning among

different graphs.

We test on unseen graphs from different work-

loads by pretraining the SGDP on different subsets

of five workloads, excluding the entire workload of

the unseen graph. For example, for an RNNLM

input graph, all RNNLM models are excluded from

thepretraining dataset. During pretraining,weper-

turb the number of layers, hidden size, and batch

size of the input graphs to augment the data and

add more randomness to the input data. SGDP-

zeroshot directly runs inference on the pre-trained

SGDP model to generate placements for the target

graph. SGDP-finetune further trains the pre-trained

SGDPmodel for an additional 50 training steps and

generates placements using the fine-tuned SGDP

model.We find that SGDP-finetune almostmatches

theperformance of SGDP-one, degrading theplace-

ment runtime on average by only 1.2% compared

to SGDP-one and outperforms both human place-

ment and HDP significantly. SGDP-zeroshot

completely eliminates the training for the target

unseen graphs, while being only 3.7% worse on

average than SGDP-one and being over 10% better

than human placement. This indicates that both

graph embedding and the learned policies transfer

and generalize to the unseen data.

CONCLUSION
We propose an efficient single-shot, general-

ized deep RL method (SGDP) and demonstrate

superior performance on a wide set of represen-

tative deep learning models, including Inception-

v3, AmoebaNet, RNNLM, GNMT, Transformer-XL,

and WaveNet. Our method on average achieves

20% improvement over human experts and 18%

improvement over the prior art with 15� faster

convergence, being the first to demonstrate

super human performance on large graphs con-

sisting of over 50 000 nodes.

APPENDIX A
INPUT GRAPHS

We used a variety of widely used workloads from

computer vision, speech, and NLP. In this sec-

tion, we give a detailed explanation on the

selected models and hyperparameters.

Inception-V3

Inception-V3 is a multibranch convolutional net-

work used for a variety of computer vision tasks,

including classification, recognition, or generation.

The network consists of blocks made of multiple

branches of convolutional and pooling operations.

Within ablock, thebranchesof ops canbe executed

in parallel. However, themodel ismostly sequential

as the outputs of each block are concatenated

together to form the input to the next block.We use

a batch size of 64. The TensorFlow graph of this

model contains 24 713 operations.

AmoebaNet

AmoebaNet is an automatically designed neural

network that yields SOTA performance on Image-

Net. Similar to Inception-V3, it contains Inception-

like blocks called cells, which receives a direct

input from the previous cell and a skip input from

the cell before it. We use a batch size of 64. The

TensorFlow graphs contains 9430 operations.

Recurrent Neural Network Language Model

RNNLM is made of many LSTM cells organized in

a grid structure. The processing of each LSTM

Table 2. Runtime comparison on SGDP-batch versus SGDP-one.

Model Speedup Model Speedup

2-layer RNNLM 0 Inception 0

4-layer RNNLM 5% AmoebaNet �5%

2-layer GNMT 0
4-stack 36-layer

WaveNet
3.3 %

4-layer GNMT 0
2-stack 18-layer

WaveNet
15%

2-layer

Transformer-XL
7.6%

8-layer Transformer-

XL
1.5%

4-layer

Transformer-XL
3%

September/October 2020 33
Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 07,2024 at 19:37:02 UTC from IEEE Xplore. Restrictions apply.

cell only depends on the results of 2 other cells

(from the previous layer, and from the previous

time step), which make the concurrent execu-

tion of many LSTM cells possible given enough

hardware resources. We use batch size 64 and a

hidden size of 2048. The corresponding Tensor-

Flow graph contains 9021 operations for a 2-layer

model. The number of ops grow roughly propor-

tional with the number of layers.

GNMT

Neural machine translation with attention mech-

anism has an architecture similar to that of

RNNLM, but its many hidden states make it far

more computationally expensive than RNNLM.

We use batch size 64. The original 2-layer

encoder-decoder consisting of 28 044 opera-

tions. An extended 4-layer version consisting of

46 600 operations, An even larger 8-layer version

consisting of 83 712 operations.

Transformer-XL

Transformer-XL10 is an modified version of

Transformer18 that supports segment-level

recurrence and a novel positional encoding

scheme. This innovation enables learning depen-

dence that is 80% longer than RNNs, and 450%

longer than vanilla Transformers. We use a

Transformer-XL with batch size of 64, sequence

length of 256, segment length of 64, model hid-

den dimension of 500 and feed forward hidden

dimension of 1000, 10 heads, and head dimen-

sion of 50. The 2-layer Transformer-XL contains

2618 operations. The number of ops grow

roughly proportional with the number of layers.

WaveNet

WaveNet is a generative model for speech synthe-

sis. The model is fully probabilistic and autore-

gressive, with the predictive distribution for each

audio sample conditioned on all previous ones.

We use a WaveNet model with batch size 64 and a

receptive field size of 2048 (9-layers per stack). An

5-stack WaveNet contains 4374 operations and a

10-stackWaveNet contains 8516 operations.

APPENDIX B
HYPERPARAMETERS

We list out all the selected hyperparameters in

our experiments for reproducibility in Tables 3

and 4.

ACKNOWLEDGMENTS
This work was done during internship at

Google.

& REFERENCES

1. A. Mirhoseini et al., “Device placement optimization

with reinforcement learning,” in Proc. Int. Conf. Mach.

Learn., 2017.

2. Z. Jia et al., “Beyond data and model parallelism for

deep neural networks,” in Proc. 35th Int. Conf. Mach.

Learn., 2018.

3. A. Mirhoseini et al., “A hierarchical model for device

placement,” in Proc. Int. Conf. Learn. Representations,

2018.

4. W. L. Hamilton et al., “Inductive representation

learning on large graphs,” in Proc. Conf. Neural Inf.

Process. Syst., 2017.

5. K. Xu et al., “How powerful are graph neural

networks?,” in Proc. Int. Conf. Learn. Representations,

2019.

6. H. Joel et al., “Deep learning scaling is predictable,

empirically,” 2017, arXiv:1712.00409.

7. S. Noam et al., “Outrageously large neural networks:

The sparsely-gated mixture-of-experts layer,” in Proc.

Int. Conf. Learn. Representations, 2017.

Table 3. Hyperparameters for policy network. gs layers:

GraphSAGE layers, gs knn: GraphSAGE maximum

neighbors, trf d model: Dimension of the Transformer-

XL model, trf n head: Number of attention heads,

trf layers: Number of Transformer-XL layers,

trf d heads: Dimension of each attention head,

trf d inner: Dimension of inner hidden size in

positionwise feed-forward.

Parameters Value Parameters Value

gs layers 4 gs dim 128

gs knn 5 trf layers 2

trf d model 128 trf n head 5

trf d head 25 trf d inner 256

Table 4. Hyperparameters for PPO.

Parameters Value Parameters Value

learing rate 0.5 num of rollouts 800

minibatches 40 epochs 20

epsilon 0.2 entropy 0.5

optimizer Adam

Machine Learning for Systems

34 IEEE Micro

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 07,2024 at 19:37:02 UTC from IEEE Xplore. Restrictions apply.

8. A. Paliwal et al., “REGAL: Transfer learning for fast

optimization of computation graphs,” Knowl. Discovery

Database, 2019.

9. A. Paliwal et al., “Reinforced genetic algorithm learning

for optimizing computation graphs,” in Proc. Int. Conf.

Learn. Representations, 2020.

10. Z. Dai et al., “Transformer-XL: Attentive language

models beyond a fixed-length context,” in Proc. 57th

Annu. Meeting Assoc. Comput. Linguistics, 2019,

pp. 2978–2988.

11. I. Sutskever et al., “Spotlight: Optimizing device

placement for training deep neural networks,” in Proc.

Conf. Neural Inf. Process. Syst., 2018.

12. Y. Huang et al., “GPipe: Efficient training of giant

neural networks using pipeline parallelism,” in Proc.

NeurIPS, 2019.

13. N. Shazeer et al., “Mesh-tensorflow: Deep learning for

supercomputers,” in Proc. NeurIPS, 2018.

14. B. Cheung et al., “Superposition of many models into

one,” in Proc. NeurIPS, 2019.

15. J. Schulman et al., “Proximal policy optimization

algorithms,” 2017, arXiv:1707.06347.

16. R. Addanki et al., “Placeto: Learning generalizable

device placement algorithms for distributed machine

learning,” in Proc. NuerIPS, 2019.

17. Z. Dai, “Improving deep generative modeling with

applications,” 2019.

18. V. Ashish et al., “Attention is all you need,” in Proc.

Conf. Neural Inf. Process. Syst., 2017.

19. D. Narayanan et al., “PipeDream: Generalized pipeline

parallelism for DNN training,” in Proc. Symp. Oper.

Syst. Principles, 2019.

20. P. Veli�ckovi�c et al., “Graph attention networks,” in

Proc. Int. Conf. Learn. Representations, 2018.

Yanqi Zhou is currently a Research Scientist with

Google Brain. She works on generalizing machine

learning to optimize systems problems, including

compiler graph optimizations and hardware acceler-

ator design. In addition, she builds large-scale deep

learning models for speech and language tasks.

Zhou received her Ph.D. degree from Princeton Uni-

versity, working on configurable computer architec-

tures and resource provisioning for clouds. Contact

her at yanqiz@google.com.

Sudip Roy is currently a Senior Research Scien-

tist with Google AI. He is interested in design and

development of systems for machine learning and

also in applying machine learning to solve optimi-

zation problems that arise in systems. He has

worked on a variety of problems in this space

including infrastructure for large-scale distributed

machine learning, data management solutions for

managing data lakes, using reinforcement learning

to solve optimization problems in machine learning

compilers, and geo-replicated transaction proc-

essing systems. Roy received a Ph.D. degree in

computer science from Cornell University. Contact

him at sudipr@google.com.

Amirali Abdolrashidi is currently working toward

the Ph.D. degree in computer science and engineer-

ing from the University of California, Riverside, where

he works on speeding up data-dependent workloads

on GPU architectures. Abdolrashidi received the

M.S. degree in electrical engineering from New York

University, in 2014, and during his Software Engi-

neering Internship with Google, he worked to

improve the performance of deep learning applica-

tions through prioritized fusion of operations. Contact

him at abdolrashidi@gmail.com.

Daniel Lin-Kit Wong is currently working toward

the Ph.D. degree with the Computer Science

Department, Carnegie Mellon University. He is a

systems builder and hacker with a focus on systems

design and distributed systems. His research focus

has been machine learning for caching. Contact

him at wonglkd@gmail.com.

Peter Ma is currently a Software Engineer with Goo-

gle, and he works on machine learning accelerator

architecture and machine learning platforms perfor-

mance. Ma received the Ph.D. degree in mechanical

engineering with a Ph.D. Minor in computational and

mathematical engineering from Stanford University.

Contact him at pcma@google.com.

Qiumin Xu is currently a Senior Software Engineer

with Google Brain, working on the performance of

machine learning accelerators. Xu received the

Ph.D. degree in electrical engineering from the

University of Southern California. Contact her at

qiuminxu@google.com.

September/October 2020 35
Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 07,2024 at 19:37:02 UTC from IEEE Xplore. Restrictions apply.

Azalia Mirhoseini is currently a Senior Research

Scientist with Google Brain, where she works on

deep reinforcement learning based approaches to

solve problems in computer systems. Mirhoseini

received the Ph.D. degree in electrical and computer

engineering from Rice University. She was the recipi-

ent of a number of awards, including the MIT Tech-

nology Review 35 under 35 award, the Best Ph.D.

Thesis Award at Rice, and a Gold Medal in the

National Math Olympiad in Iran. Her work has been

covered in various media outlets including MIT Tech-

nology Review and IEEE Spectrum. Contact her at

azalia@google.com.

James Laudon is currently an Engineering Director

with Google Brain. His research interests focus on hard-

ware and software co-design for high-performance sys-

tems and he is currently working on domain-specific

computer architectures for machine learning. Before

joining Google Brain, he was Founder and Site Director

for theGoogleMadison office. He has contributed to the

architecture and implementation of multiple computer

systems including the Stanford DASH, SGI Origin 2000,

and Sun UltraSPARC T1. Laudon received the B.S.

degree in electrical engineering from the University of

Wisconsin—Madison and the M.S. and Ph.D. degrees

in electrical engineering from Stanford University.

Contact him at jlaudon@google.com.

Machine Learning for Systems

36 IEEE Micro

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 07,2024 at 19:37:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

