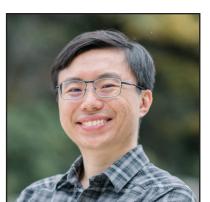
Baleen: ML Admission & Prefetching for Flash Caches

Daniel Lin-Kit Wong, Hao Wu[†], Carson Molder[§], Sathya Gunasekar[†], Jimmy Lu[†], Snehal Khandkar[†], Abhinav Sharma[†], Daniel S. Berger[‡], Nathan Beckmann, Gregory R. Ganger



Introduction

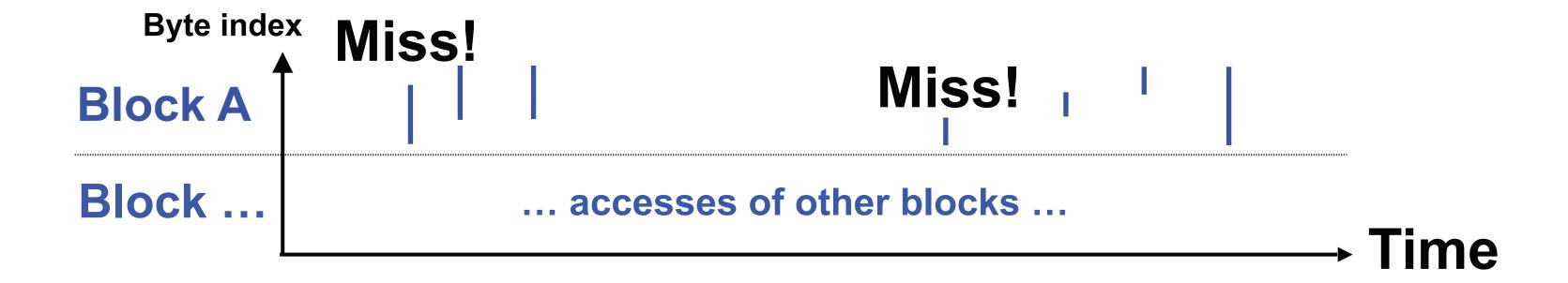
- Flash caches often used to reduce peak backend load
 - > Reducing backend #HDDs & servers needed
- Need to limit long-term flash write rate
 - > To avoid premature flash wearout

Goal: reduce peak load while avoiding excessive writes

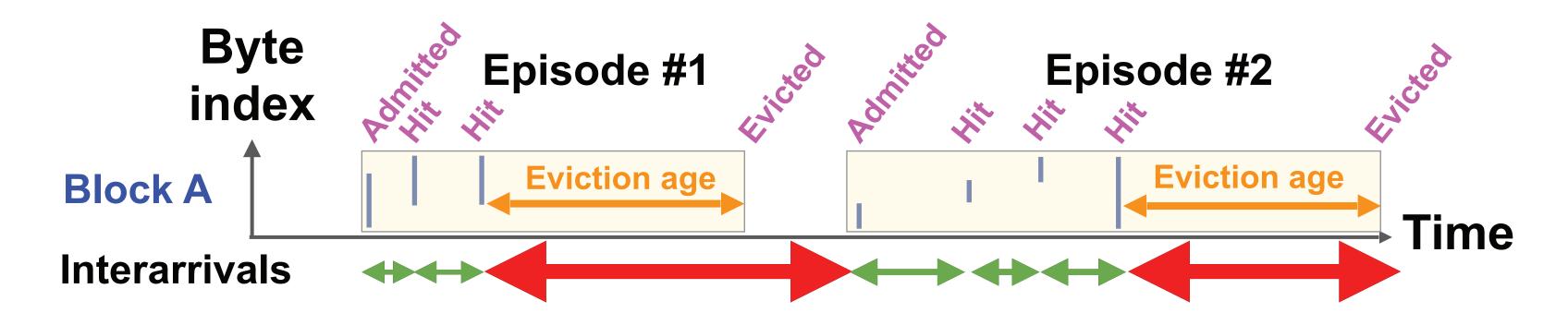
- Use ML for cache policy decisions
- Key ideas
 - > Exploit a new cache residency model (episodes)
 - Coordinate admission & prefetching
 - Optimize for Disk-Head Time rather than miss rate

Episodes: A Model for Flash Caching

• Observation: admission decisions made on misses



- Idea: group accesses temporally into episodes
 - > Episode goes from admission to eviction

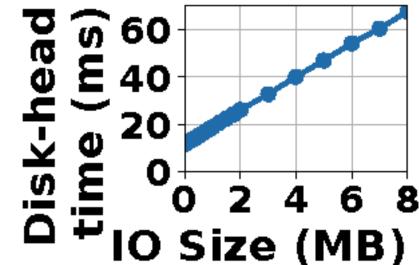


- How: model LRU cache state with assumed eviction age
 - > Split when interarrival time > eviction age

Ex: Flash Caching for Bulk Storage

- Caching minimizes backend load rather than latency
 - (1) Client requests a byte range
- (2) Check Flash Cache for data
- (3) A miss causes IO to HDD backend

How to measure backend load?
 Small IOs: IOPS, Large IOs: MB/s
 Variable size IOs: Disk-head Time (DT)



Baleen: ML for Admission & Prefetching

- OPT policies approximate optimal using episodes
 - > OPT admits episodes max. saved DT & min. flash writes
 - > OPT-Range prefetches smallest range covering episode
 - > OPT-When prefetches if PrefetchBenefit(*Ep*) > ε

$$Score(Ep) = \frac{DTSaved(Ep)}{FlashWrites(Ep)}$$

$$\frac{2}{FlashWrites(Ep)}$$

$$\frac{3}{2}$$

$$\frac{3}$$

- Baleen uses OPT policies as labels to train ML policies
 - > GBM models for ML admission, ML-Range, ML-When

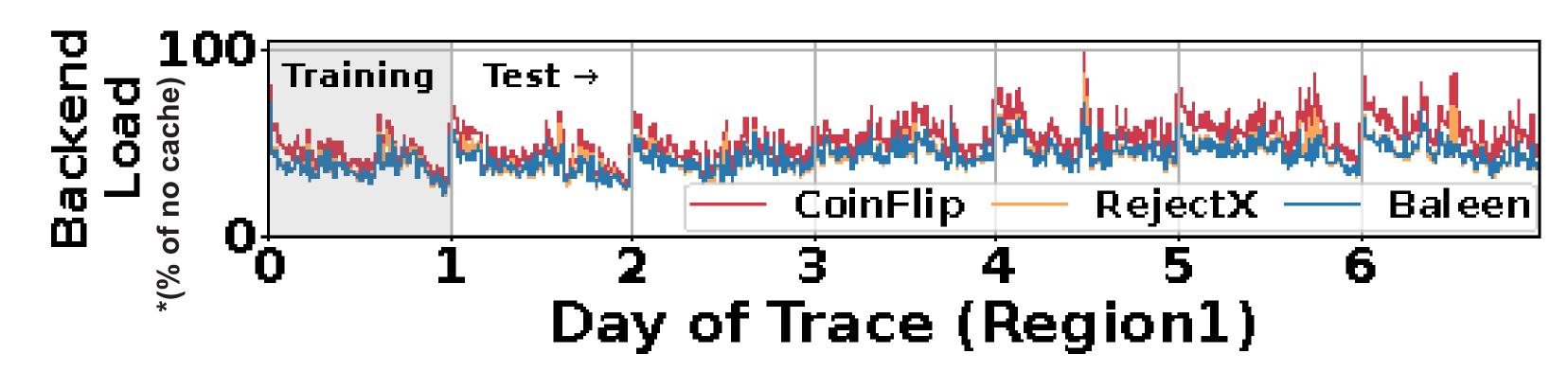
Features	Metadata			10		Usage counters					
	ns	user	tmp	start	end	hr=1	hr=2	hr=3	hr=4	hr=5	hr=6

Baleen-TCO optimizes flash write rate to minimize TCO

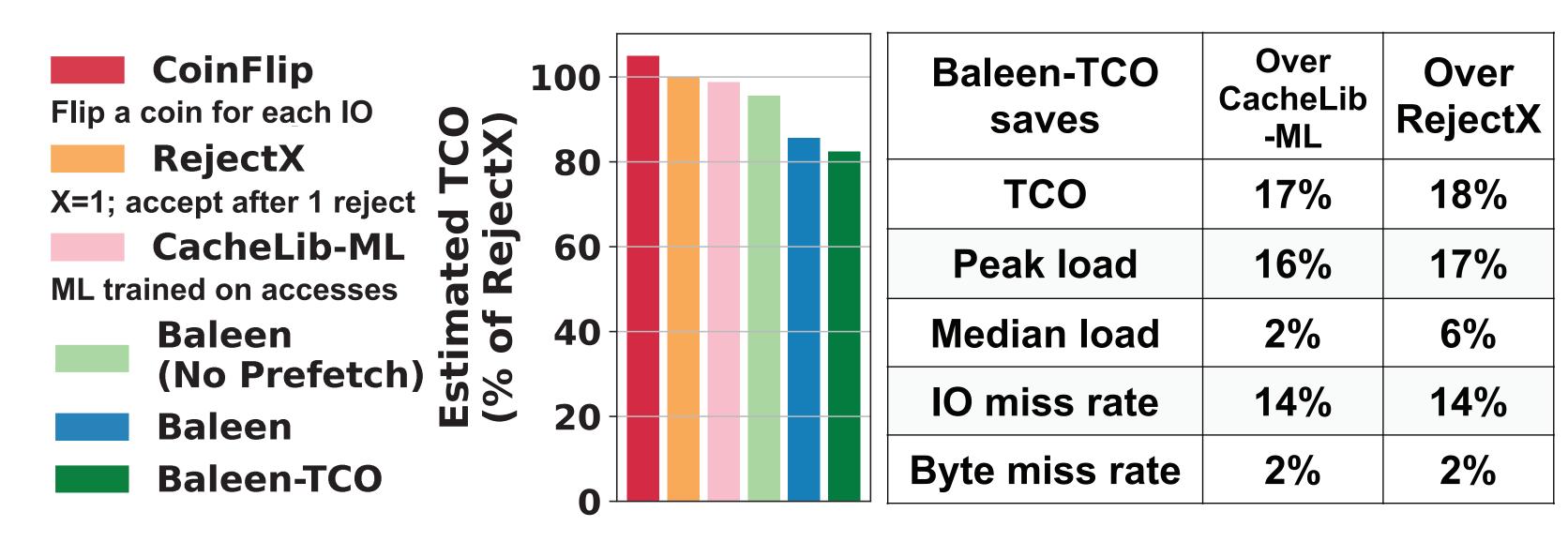
$$\mathbf{TCO_1} \propto \frac{\mathrm{PeakDT_1}}{\mathrm{PeakDT_0}} \cdot \# \mathrm{HDDs_0} + \frac{\mathrm{Cost_{SSD}}}{\mathrm{Cost_{HDD}}} \cdot \frac{\mathrm{FlashWR_1}}{\mathrm{FlashWR_0}} \cdot \# \mathrm{SSDs}$$

Evaluation

- 7 traces from Meta's Tectonic in 2019, 2021, 2023
 - > Workloads: Data warehouse, blob storage, ... [Pan21]
- Peak load: P100 DT used (measured in 10 min intervals)



- Baleen-TCO reduces estimated TCO by 17%
 - > over production baselines CacheLib-ML and RejectX
- Baleen (fixed flash write rate) reduces peak load by 12%



EXTRA TAKEAWAYS

- 1. Optimize for end-to-end metric (DT saved)
- ➤ Easy misstep: optimizing IO miss rate ≠ DT saved
- ML-Range on Every Miss good for IOs, bad for DT
- ML-Range on ML-When best for DT
- 2. Prefetching bad with bad admit decisions
 - No reduction in peak DT with baselines
- 3. Still has room for improvement (OPT is 16% better)
- 4. GBM more efficient, DT saved on par with Transformer
- 5. Unsuccessful attempts: early eviction, segment-awareness, prefetch on PUT

LESSONS FROM ML IN PRODUCTION

- ML model accuracy ≠ system performance
- Encapsulate ML, cache & storage; avoid tight coupling

