Baleen: ML Admission & Prefetching for Flash Caches

Daniel Lin-Kit Wong, Hao Wu', Carson Molders, Sathya Gunasekar’, Jimmy LuT,
Snehal Khandkar®, Abhinav Sharmat, Daniel S. Berger*, Nathan Beckmann, Gregory R. Ganger

Introduction

 Flash caches often used to reduce peak backend load
» Reducing backend #HDDs & servers needed

* Need to limit long-term flash write rate
» To avoid premature flash wearout
Goal: reduce peak load while avoiding excessive writes
e Use ML for cache policy decisions

 Key ideas

» Exploit a new cache residency model (episodes)
» Coordinate admission & prefetching
» Optimize for Disk-Head Time rather than miss rate

e Caching minimizes backend load rather than latency
(1) Client requests a byte range
(2) Check Flash Cache for data
(3) A miss causes |0 to HDD backend

e How to measure backend load?
Small I0s: IOPS, Large 10s: MB/s
Variable size 10s: Disk-head Time (DT)

N b O
0000

0246 8
10 Size (MB)

L T
» Fewer HDDS » Total%))’\s’teo:"OW?efs)hip

(dominated by media costs)

Disk-head
time (ms)

Lower
peak load

Episodes: A Model for Flash Caching

e Observation: admission decisions made on misses

Byte index = 1
~ Miss!

Block A | | M'?S! !
Block accesses of other blocks ...
- Time
* |dea: group accesses temporally into episodes
» Episode goes from admission to eviction
> >
the {g’& pisode #1 & &&@ Episode #2 e
neex L& ¢ ¢ & ¢

— 4 oo

Interarrivals D>

| .
P | I Time

* How: model LRU cache state with assumed eviction age
» Split when interarrival time > eviction age

Evaluation

Baleen: ML for Admission & Prefetching

* OPT policies approximate optimal using episodes
» OPT admits episodes max. saved DT & min. flash writes
» OPT-Range prefetches smallest range covering episode
» OPT-When prefetches if PrefetchBenefit(Ep) > €

Episode #1
Misses, Prefetches, Hits
w A
Score(Ep) — DTSav§d(Ep) ¢ | E E -
FlashWrites(Ep) & o writes
()
w >

#1 #2 #3
Access order

 Baleen uses OPT policies as labels to train ML policies
» GBM models for ML admission, ML-Range, ML-When

Metadata | 10 Usage counters
ns |user|tmp |start| end |hr=1|hr=2 hr=3 | hr=4 | hr=5|hr=6

Features

e Baleen-TCO optimizes flash write rate to minimize TCO

PeakDT4 Costgep FlashWR;4
TCO . #HDDs - v =
L # >0 COStHDD F_.aS_[lWRO

PeakDT

e 7 traces from Meta’s Tectonic in 2019, 2021, 2023
» Workloads: Data warehouse, blob storage, ... [Pan21]
e Peak load: P100 DT used (measured in 10 min intervals)

Day of Trace {Regionl)

« Baleen-TCO reduces estimated TCO by 17%
» over production baselines CachelLib-ML and RejectX

 Baleen (fixed flash write rate) reduces peak load by 12%

B CoinFlip

Flip a coin for each IO

RejectX
X=1; accept after 1 reject

Cachelib-ML

ML trained on accesses

Baleen
(No Prefetch)

B Baleen
B Baleen-TCO

Estimated TCO
(% of RejectX)

100 -

80 -

60 -

40 -

20 -

0_

&
E e, %ﬂﬂ Training Test = I| I
m L I | . I
H I E 5 —— CoinFlip RejectX —— Baleen
g 0 1 2 3 4 - b

Baleen-TCO Over | Over
Cachellib ReiectX
saves ML ejec
TCO 17% 18%
Peak load 16% 17%

Median load

2%

6%

10 miss rate

14%

14%

Byte miss rate

2%

2%

Carnegie Mellon University

EXTRA TAKEAWAYS
1. Optimize for end-to-end metric (DT saved)

» Easy misstep: optimizing IO miss rate # DT saved
» ML-Range on Every Miss good for |10s, bad for DT
» ML-Range on ML-When best for DT

2. Prefetching bad with bad admit decisions
> No reduction in peak DT with baselines

3. Still has room for improvement (OPT is 16% better)

4. GBM more efficient, DT saved on par with Transformer

5. Unsuccessful attempts: early eviction,
segment-awareness, prefetch on PUT

LESSONS FROM ML IN PRODUCTION
e ML model accuracy # system performance
 Encapsulate ML, cache & storage; avoid tight coupling

Parallel Data
Laboratory

il

FAST24

