
• OPT policies approximate optimal using episodes
 › OPT admits episodes max. saved DT & min. flash writes

› OPT-Range prefetches smallest range covering episode
› OPT-When prefetches if PrefetchBenefit(Ep) > ε

• Baleen uses OPT policies as labels to train ML policies
› GBM models for ML admission, ML-Range, ML-When

• Baleen-TCO optimizes flash write rate to minimize TCO

Features Metadata IO Usage counters
ns user tmp start end hr=1 hr=2 hr=3 hr=4 hr=5 hr=6

• How to measure backend load?
Small IOs: IOPS, Large IOs: MB/s
Variable size IOs: Disk-head Time (DT)

...1 2 3 4
IO

Lower
peak load Fewer HDDs Lower TCO

Total Cost of Ownership
(dominated by media costs)

3
2 2

3
2
1

Se
gm

en
ts

Access order

Misses, Prefetches, Hits

#1 #2 #3

Episode #1

3 flash 
writes

EXTRA TAKEAWAYS
1. Optimize for end-to-end metric (DT saved)

› Easy misstep: optimizing IO miss rate ≠ DT saved
› ML-Range on Every Miss good for IOs, bad for DT
› ML-Range on ML-When best for DT

2. Prefetching bad with bad admit decisions
› No reduction in peak DT with baselines

3. Still has room for improvement (OPT is 16% better)
4. GBM more efficient, DT saved on par with Transformer
5. Unsuccessful attempts: early eviction, 

segment-awareness, prefetch on PUT

LESSONS FROM ML IN PRODUCTION
• ML model accuracy ≠ system performance
• Encapsulate ML, cache & storage; avoid tight coupling

Baleen: ML Admission & Prefetching for Flash Caches

Introduction

Daniel Lin-Kit Wong, Hao Wu†, Carson Molder§, Sathya Gunasekar†, Jimmy Lu†,
Snehal Khandkar†, Abhinav Sharma†, Daniel S. Berger‡, Nathan Beckmann, Gregory R. Ganger

• Flash caches often used to reduce peak backend load
› Reducing backend #HDDs & servers needed

• Need to limit long-term flash write rate
› To avoid premature flash wearout

Goal: reduce peak load while avoiding excessive writes
• Use ML for cache policy decisions
• Key ideas

› Exploit a new cache residency model (episodes)
› Coordinate admission & prefetching
› Optimize for Disk-Head Time rather than miss rate

• Caching minimizes backend load rather than latency
 (1) Client requests a byte range
 (2) Check Flash Cache for data
 (3) A miss causes IO to HDD backend

Ex: Flash Caching for Bulk Storage

Episodes: A Model for Flash Caching
• Observation: admission decisions made on misses

Baleen: ML for Admission & Prefetching

• 7 traces from Meta’s Tectonic in 2019, 2021, 2023
 › Workloads: Data warehouse, blob storage, ... [Pan21]
• Peak load: P100 DT used (measured in 10 min intervals)

Evaluation

• Baleen-TCO reduces estimated TCO by 17%
› over production baselines CacheLib-ML and RejectX

• Baleen (fixed flash write rate) reduces peak load by 12%

• Idea: group accesses temporally into episodes
› Episode goes from admission to eviction

• How: model LRU cache state with assumed eviction age
› Split when interarrival time > eviction age

FAST24

0

20

40

60

80

100

Es
ti

m
at

ed
 T

C
O

(%
 o

f 
R

ej
ec

tX
)

Simulator & Traces
pdl.cmu.edu/CILES

Flip a coin for each IO

X=1; accept after 1 reject

ML trained on accesses

Block A
Time

Byte 
index

Episode #1 Episode #2

Interarrivals

Eviction ageEviction age

Adm
itt

ed

Evic
ted

Evic
ted

Hit Hit Adm
itt

ed
Hit Hit Hit

Block A

Time
Block …

Byte index

Miss!
Miss!

… accesses of other blocks …

Baleen-TCO 
saves

Over 
CacheLib

-ML

Over 
RejectX

TCO 17% 18%
Peak load 16% 17%

Median load 2% 6%
IO miss rate 14% 14%

Byte miss rate 2% 2%

*(
%

 o
f n

o 
ca

ch
e)


