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Introduction

 Flash caches often used to reduce peak backend load
» Reducing backend #HDDs & servers needed

* Need to limit long-term flash write rate
» To avoid premature flash wearout
Goal: reduce peak load while avoiding excessive writes
e Use ML for cache policy decisions

 Key ideas

» Exploit a new cache residency model (episodes)
» Coordinate admission & prefetching
» Optimize for Disk-Head Time rather than miss rate

e Caching minimizes backend load rather than latency
(1) Client requests a byte range
(2) Check Flash Cache for data
(3) A miss causes |0 to HDD backend

e How to measure backend load?
Small I0s: IOPS, Large 10s: MB/s
Variable size 10s: Disk-head Time (DT)

N b O
0000

0246 8
10 Size (MB)

L T
» Fewer HDDS » Total%))’\s’teo:"OW?efs)hip

(dominated by media costs)

Disk-head
time (ms)

Lower
peak load

Episodes: A Model for Flash Caching

e Observation: admission decisions made on misses
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* |dea: group accesses temporally into episodes
» Episode goes from admission to eviction
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* How: model LRU cache state with assumed eviction age
» Split when interarrival time > eviction age

Evaluation

Baleen: ML for Admission & Prefetching

* OPT policies approximate optimal using episodes
» OPT admits episodes max. saved DT & min. flash writes
» OPT-Range prefetches smallest range covering episode
» OPT-When prefetches if PrefetchBenefit(Ep) > €
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 Baleen uses OPT policies as labels to train ML policies
» GBM models for ML admission, ML-Range, ML-When

Metadata | 10 Usage counters
ns |user|tmp |start| end |hr=1|hr=2 hr=3 | hr=4 | hr=5|hr=6

Features

e Baleen-TCO optimizes flash write rate to minimize TCO
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e 7 traces from Meta’s Tectonic in 2019, 2021, 2023
» Workloads: Data warehouse, blob storage, ... [Pan21]
e Peak load: P100 DT used (measured in 10 min intervals)
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« Baleen-TCO reduces estimated TCO by 17%
» over production baselines CachelLib-ML and RejectX

 Baleen (fixed flash write rate) reduces peak load by 12%

B CoinFlip

Flip a coin for each IO

RejectX
X=1; accept after 1 reject

Cachelib-ML

ML trained on accesses
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Baleen-TCO Over | Over
Cachellib ReiectX
saves ML ejec
TCO 17% 18%
Peak load 16% 17%
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EXTRA TAKEAWAYS
1. Optimize for end-to-end metric (DT saved)

» Easy misstep: optimizing IO miss rate # DT saved
» ML-Range on Every Miss good for |10s, bad for DT
» ML-Range on ML-When best for DT

2. Prefetching bad with bad admit decisions
> No reduction in peak DT with baselines

3. Still has room for improvement (OPT is 16% better)

4. GBM more efficient, DT saved on par with Transformer

5. Unsuccessful attempts: early eviction,
segment-awareness, prefetch on PUT

LESSONS FROM ML IN PRODUCTION
e ML model accuracy # system performance
 Encapsulate ML, cache & storage; avoid tight coupling
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