

Baleen: ML Admission & Prefetching for Flash Caches

Daniel L.-K. Wong

wonglkd@cmu.edu

Hao Wu[†], Carson Molder[§], Sathya Gunasekar[†], Jimmy Lu[†], Snehal Khandkar[†] Abhinav Sharma[†], Daniel S. Berger[‡], Nathan Beckmann, Gregory R. Ganger [†]Meta, [‡]Microsoft/UW, [§]UT Austin

PARALLEL DATA LABORATORY

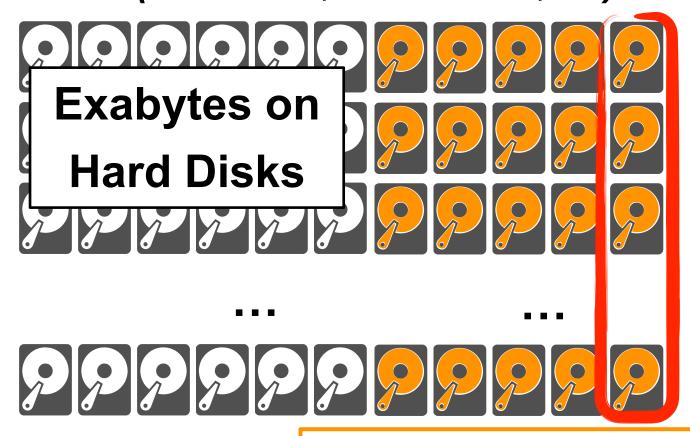
Carnegie Mellon University

Center for Coastal Studies

Bulk storage systems depend on flash caches

Bulk Storage

(Tectonic, Colossus, ...)



Extra HDDs needed

for IOPS & bandwidth

Flash caches absorb HDD load

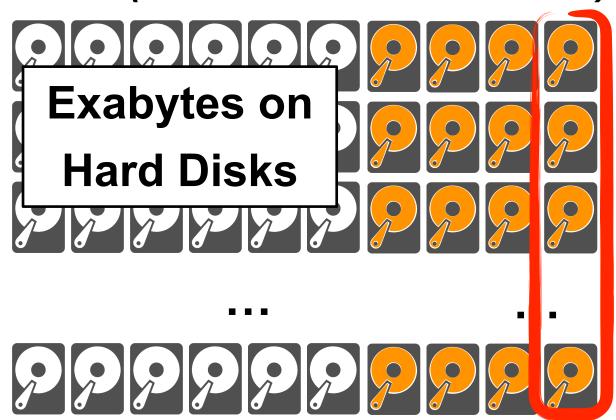
(CacheLib, ...)

Carnegie Mellon

Better flash caches save more HDDs

Bulk Storage

(Tectonic, Colossus, ...)



Flash caches absorb HDD load

(CacheLib, ...)

Better cache?

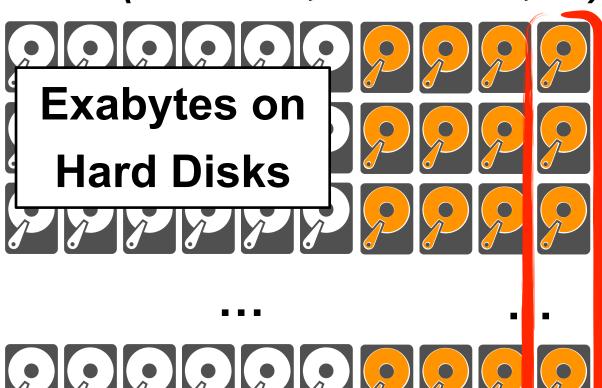
Extra HDDs needed

for IOPS & bandwidth

Flash caches are write-heavy

Bulk Storage

(Tectonic, Colossus, ...)

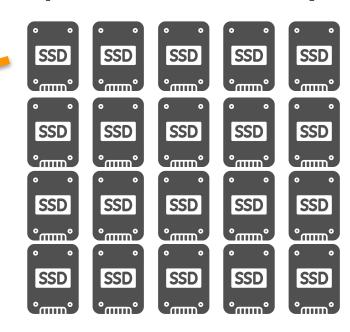


Better cache?

Extra HDDs needed for IOPS & bandwidth

Flash caches absorb HDD load

(CacheLib, ...)



Problem: Limited write endurance

Costs dominated by #HDDs & #SSDs

Baleen reduces costs by 17% on 7 traces

Reduce flash writes

→ less #SSDs

Trend: Lower flash endurance

Even more important with denser storage!

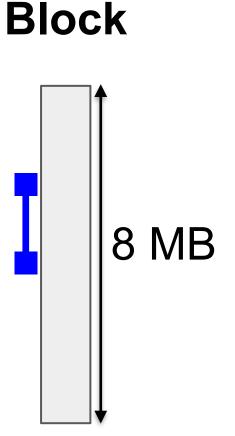
How does Baleen reduce costs by 17%?

- 3 key ideas
 - Exploit a new cache residency model (episodes)
 - Train ML admission & ML prefetching policies
 - Optimize an end-to-end metric (disk-head time)
- Why ML over heuristics?
 - More savings, more adaptive

Bulk storage clients access byte ranges within blocks

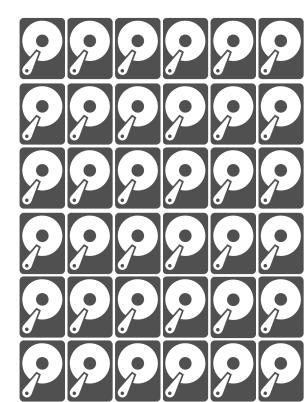
Access

- 1. Block ID
- 2. Byte Range



Host

36 hard disks



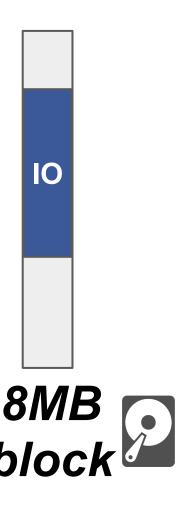
Cluster

Data center 1000s of hosts

Fetching bytes from backend causes disk IO

Client request **Byte** range

Backend (HDD)



Cache stores segments (subset of block)

Client request

Byte range

Flash cache

2

3

4

5

128KB segments

Backend (HDD)

Cache hits save disk IO

Client request

Byte range



Flash cache

2

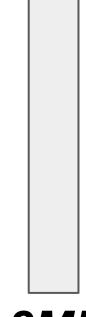
3

4

5

128KB segments

Backend (HDD)



8MB block

Cache miss causes disk IO

Client request **Byte** range

Flash cache

2

3

4

5

128KB segments

Backend (HDD)

Carnegie Mellon

Parallel Data Laboratory

Decompose flash caching into 3 decisions

Goal: Reduce HDD load without excessive flash writes

Policy Decisions:

Flash cache

(a) Admit misses?

3 4

Baleen

2

 $\widehat{\mathcal{V}}$

(b) Prefetch?

5

Baleen

4

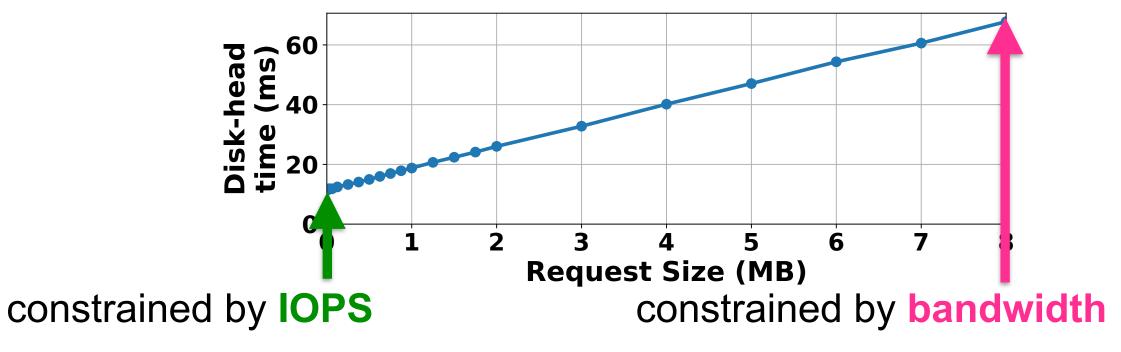
(c) When to evict?

LRU

5

Our metric: Disk-head time (DT)

- Q: Why DT instead of miss rates?
 - A: Variable size IOs (reducing #IOs & Size of IOs both important)
 - Using only IO hit rate or byte miss rate is an easy misstep (we did!)
- DT = Positioning time + Read time



Intuition: DT is weighted sum of #IOs & #Bytes

Design Episodes model

ML for caching not straightforward

Typical supervised learning

e.g., "Is this picture a cat?"

ML for Caching

- Data: trace of accesses
- Multiple related decisions: Admit now? Later? Never?
 - Depend on AND affect cache contents, future decisions
- Tend to overfit on easy decisions
- Underfit on examples at margin that distinguish policies

Carnegie Mellon Parallel Data Laboratory Training on accesses non-trivial

What is an episode?

Episode:

Group of accesses corresponding to the block's residency in flash if you admitted it on the 1st access

Why use episodes to train ML?

Right granularity

- Focus on <u>first</u> access instead of all accesses
- Policies see misses, not accesses

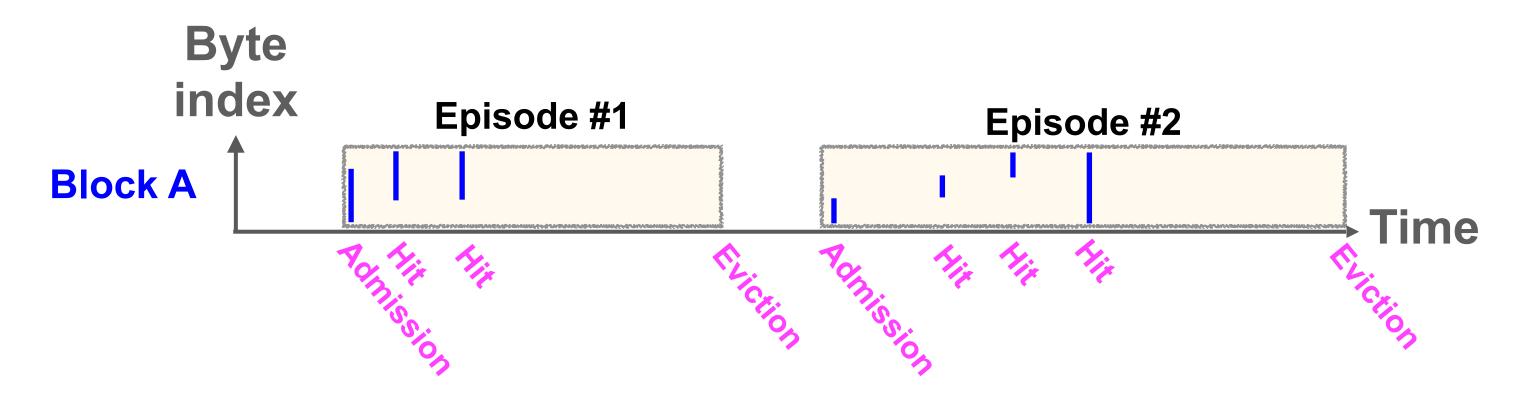
Right examples

 Avoid overfitting on popular blocks with many accesses but only 1 miss

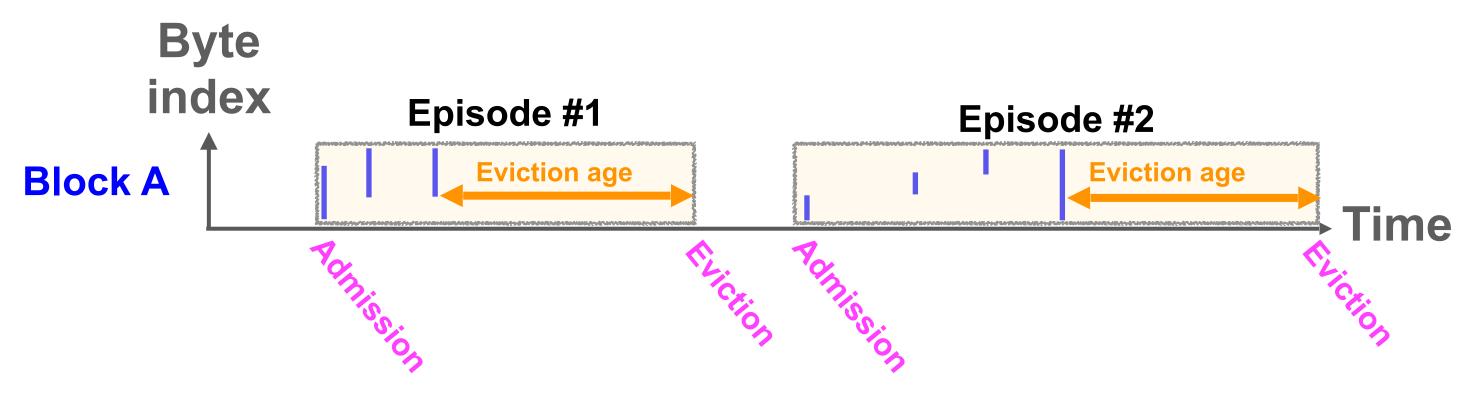
Right labels

Costs & benefits defined on admission to eviction

Episodes: from admission to eviction

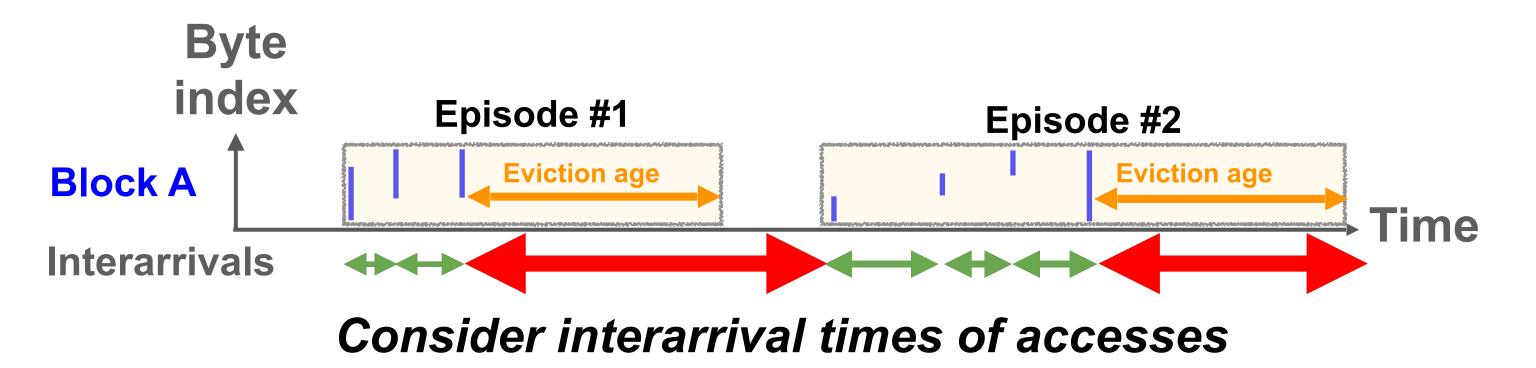


How to know when eviction happens?



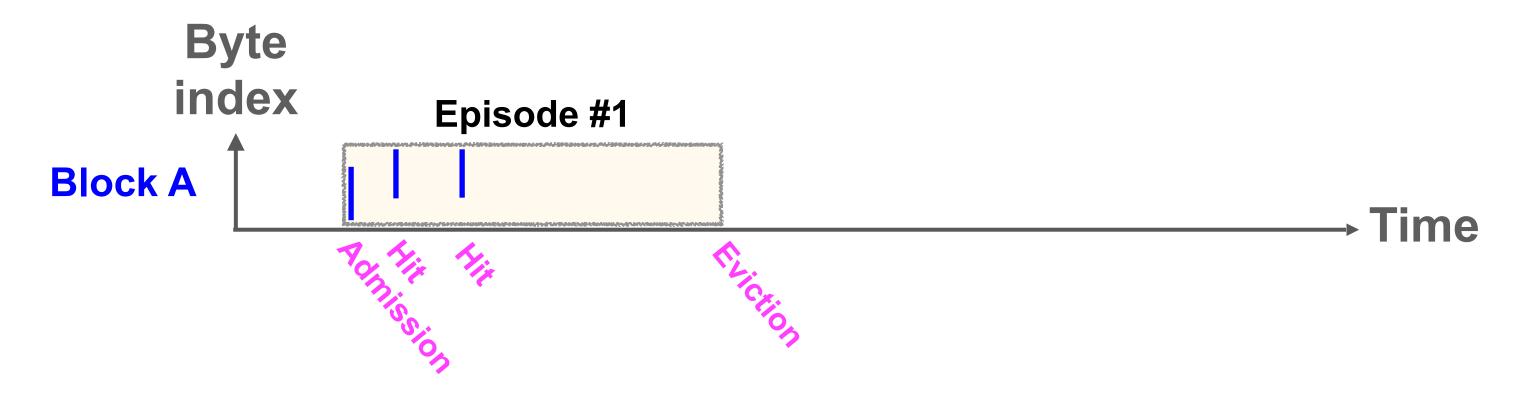
How: model LRU cache state with assumed eviction age

How episodes are generated

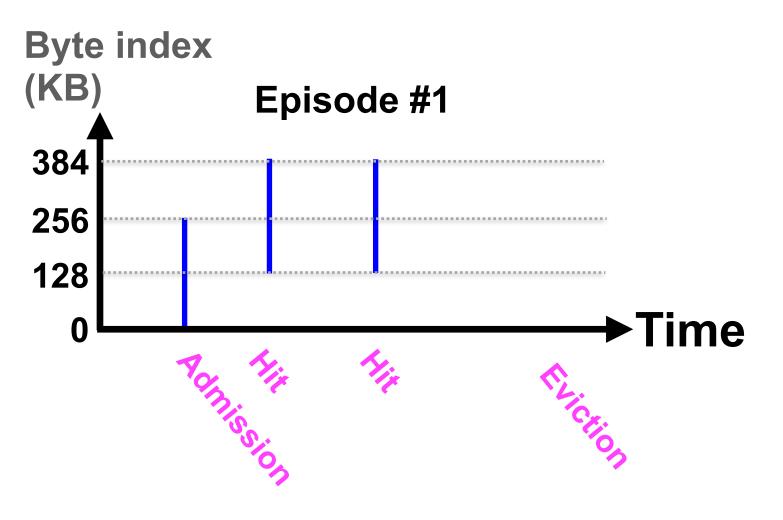


Split into episodes when interarrival > eviction age

Focusing on Episode 1...



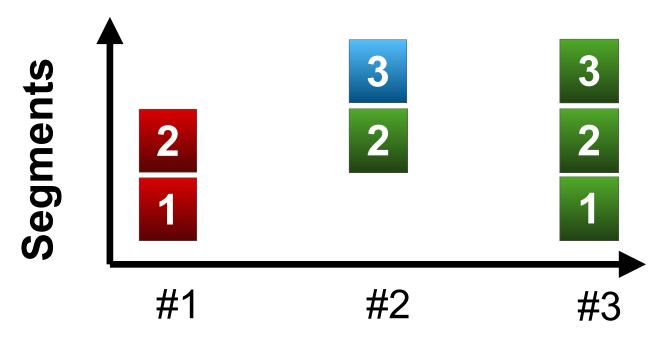
Reason about episodes instead of accesses



Benefits & costs defined on episodes

Episode #1

Misses, Prefetches, Hits



Access order

Benefit: 27ms of DT saved

• Cost: 3 flash writes needed

Design Using episode-based policies to answer "What does good look like?"

Admission: Baleen learns from episode-based OPT

OPT (approx. optimal) admits highest scoring episodes

$$Score(Ep) = \frac{DTSaved(Ep)}{FlashWrites(Ep)} = \frac{27 \text{ ms}}{3 \text{ flash writes}}$$
 Episode #1

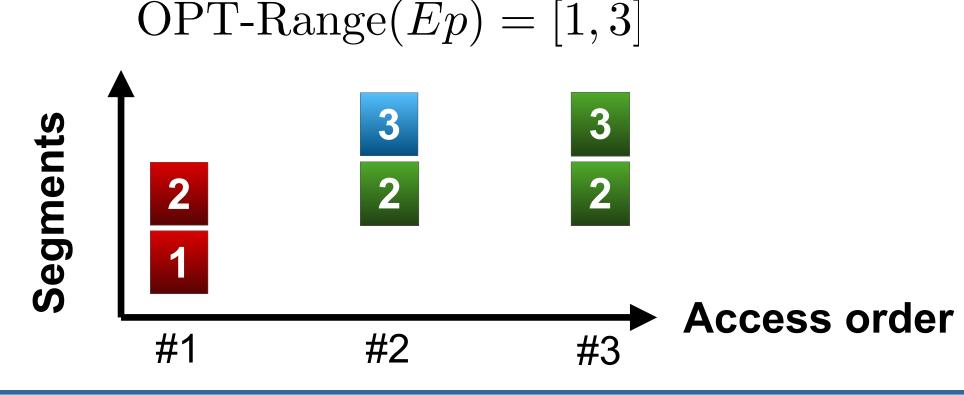
OPT emits binary labels based on flash write budget

Yes if $Score(Ep) > Cutoff_{TargetFlashWriteRate}$

Baleen imitates OPT admission

Baleen's ML-Range learns what to prefetch

- What range to prefetch
 - OPT-Range Start: lowest segment
 - OPT-Range End: highest segment
- ML-Range is trained on OPT-Range

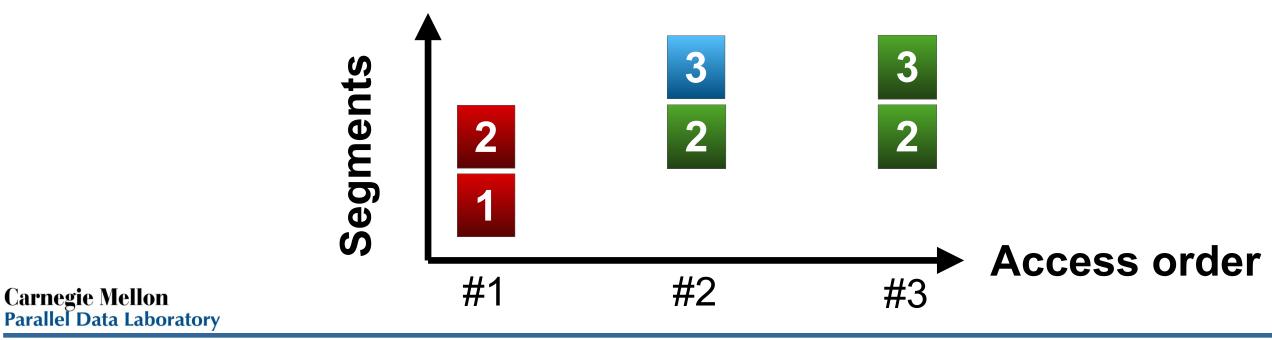


Carnegie Mellon

Parallel Data Laboratory

Baleen's ML-When learns when to prefetch

- When to prefetch
 - Bad prefetching hurts: wasted DT & cache space
 - Prefetch only when confident of benefits
 - ML-When: Yes if $PrefetchBenefit(Ep) > \epsilon$



Baleen-TCO balances HDD savings against SSD cost

Q: How to balance #HDD against #SSDs?

- Baleen-TCO picks optimal flash write rate
 - for each workload

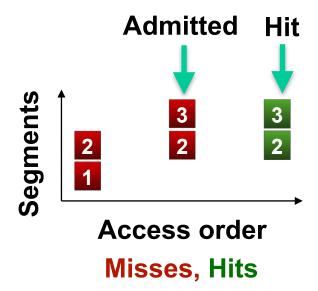
Carnegie Mellon Parallel Data Laboratory *TCO function based on Google's CacheSack [Yang23]

Evaluation

- Production workloads from Meta's Tectonic
 - 7 clusters from 3 years (2019, 2021, 2023)
 - Each serves 1-10 tenants, e.g., data warehouse
 - Each tenant serves 100s of applications
- More details on Tectonic in Pan et al (FAST 2021)
- Traces & simulator code released

Baseline admission policies

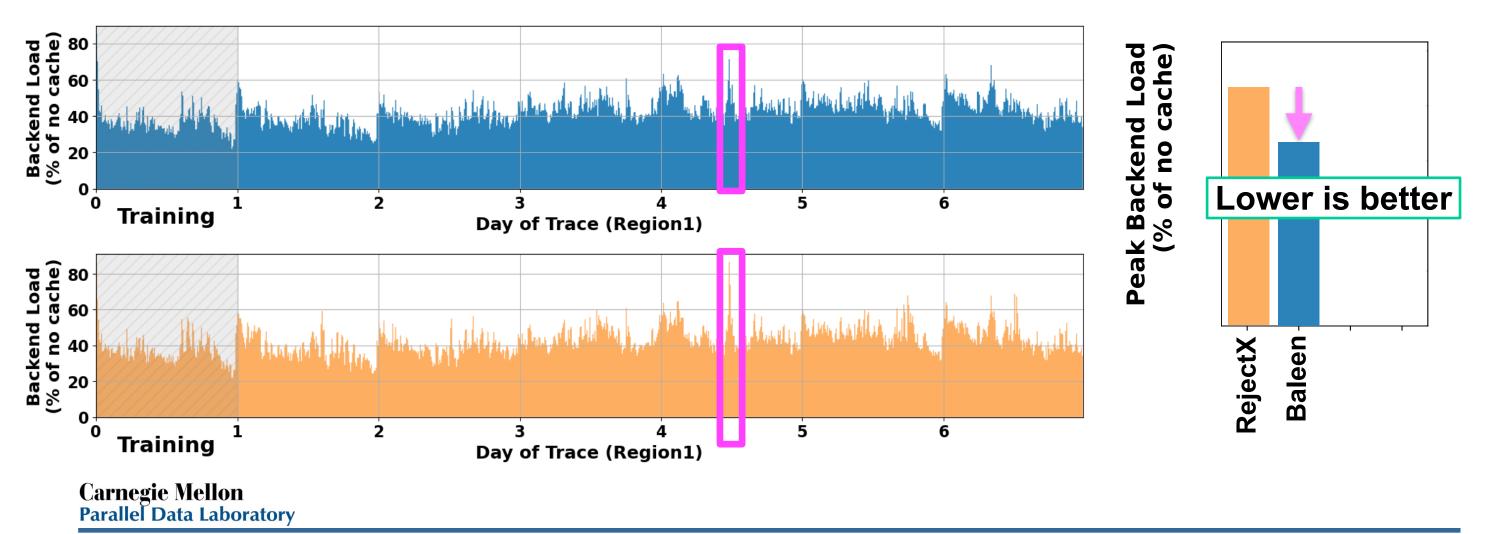
- CoinFlip: flip a coin for each IO
 - Simplest, requires no state
- RejectX (e.g., X=1: accept segment after 1 reject)
 - Used by Meta, Google as baseline
 - 2nd access is always a miss



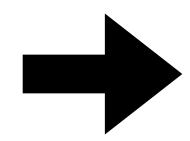
- CacheLib-ML
 - Used by Meta in production for 3 years
 - Trained on accesses, not episodes

Minimize peak backend load to minimize cost

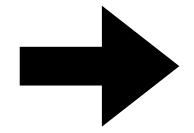
- We train (offline) on Day 1 and evaluate on Day 2-7
- We compare policies' Peak DT (as a % of no caching)



Reduce peak load to lower total cost

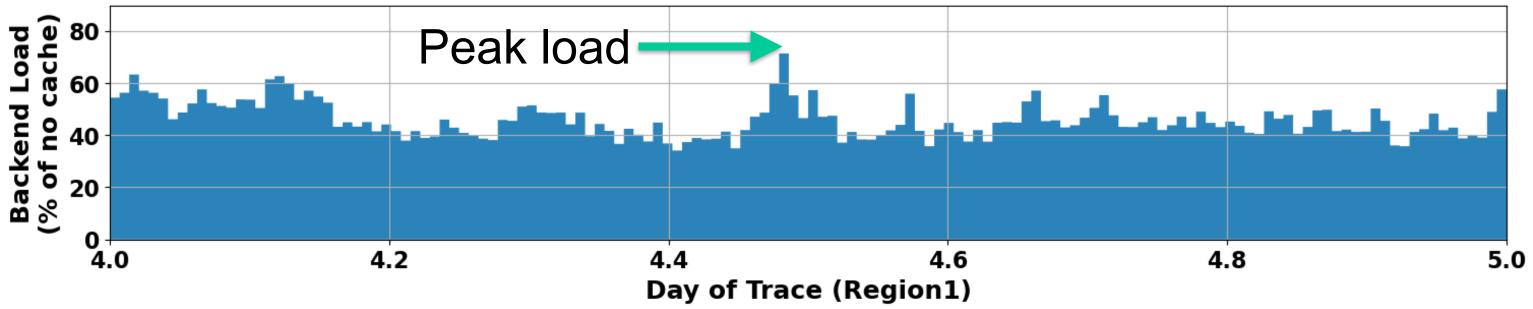


Fewer hard disks & backend servers



Lower TCO

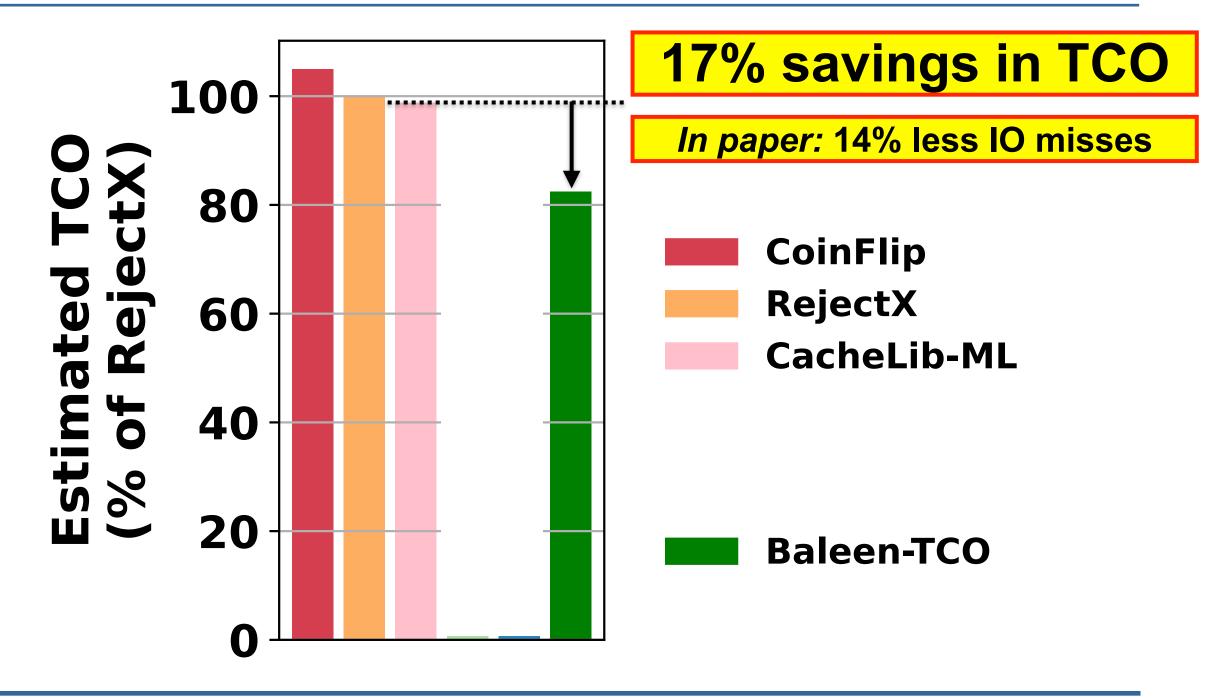
Total Cost of Ownership dominated by media costs



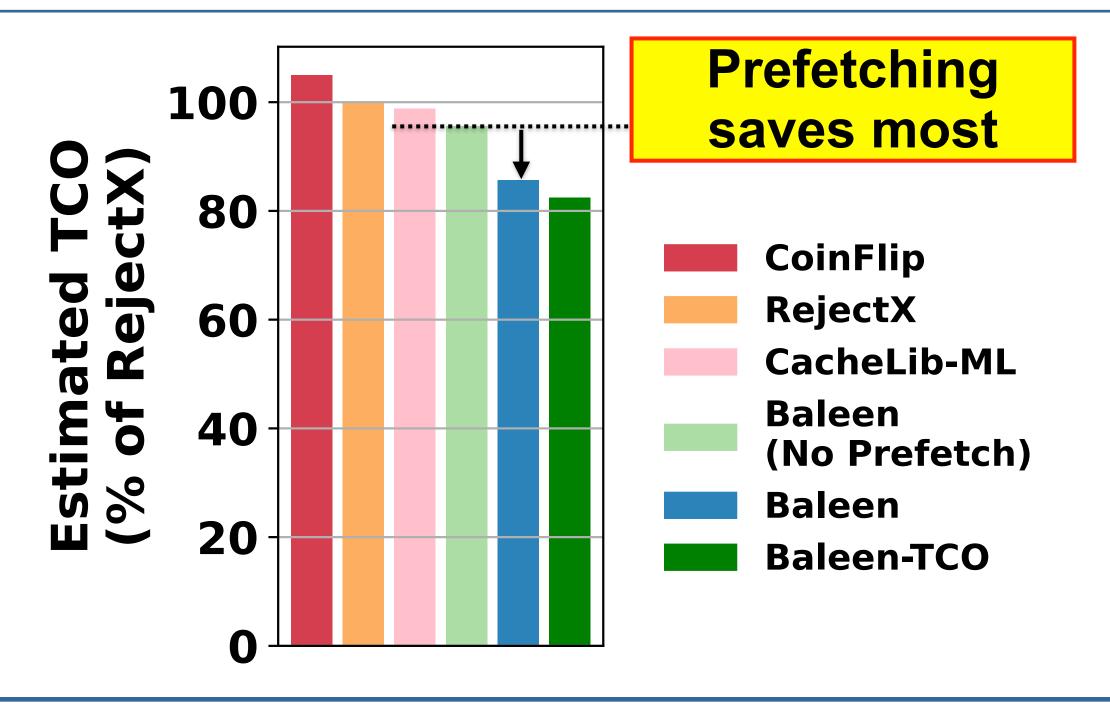
Baleen saves most cost



Baleen saves most cost



Prefetching accounts for most benefit



Prefetching depends on good admission decisions

- Choice of admission policy matters
 - ML prefetching makes admission baselines worse
- Even with ML admission, 2 models required
 - ML-Range to know what to prefetch
 - ML-When to select when to prefetch

Conclusion

- Baleen reduces cost by 17%
- Episodes guide ML training
- Optimize for Disk-head Time metric
- Smart admission & prefetching
 - ML-Range predicts what to prefetch
 - ML-When estimates confidence in ML-Range
- Ongoing work: workload drift mitigation
 - Seeking longer traces with features! (>1 week)

wonglkd@cmu.edu/www.cs.cmu.edu/~dlwong

Backup slides

- Benefits of episodes
- What features are used?
- What if we use more complex models?
- What if we vary cache size?
- Architecture
- What workloads?

Model Features

Features

- Namespace
- User
- Temp. / Perm.
- IO start, end
- Hourly #accesses (last 6)



Overhead

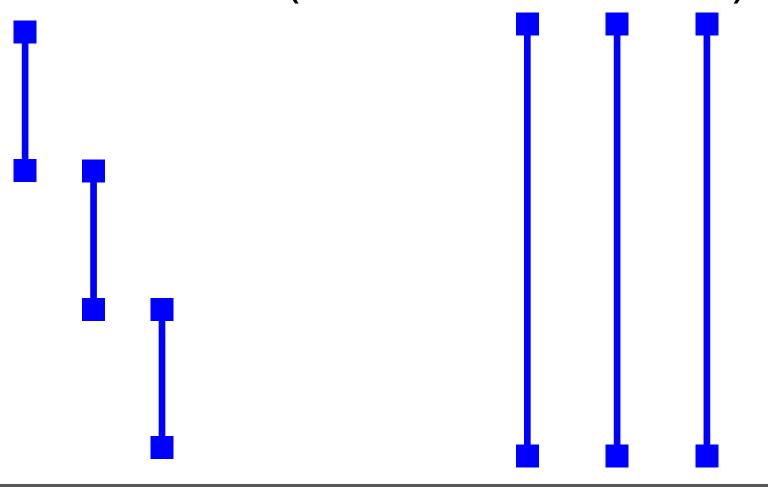
- Limiting factor: latency of a miss going to disk
 - IO: 13 to 56 ms
- Training: 1-5 mins
- Inference latency: ~30µs per inference
 - 4 inferences per access
- Metadata: <1kB per 128kB segment (<1%)

What about write amplification?

- Baleen focuses on larger items (~1MB)
 - Focus on reducing the long-term flash write rate
 - Minimum flash write: 128KB (a segment)
- Kangaroo focuses on small objects
- How you would use this in production
 - CacheLib with a small object cache (Kangaroo) and large object cache (Baleen)

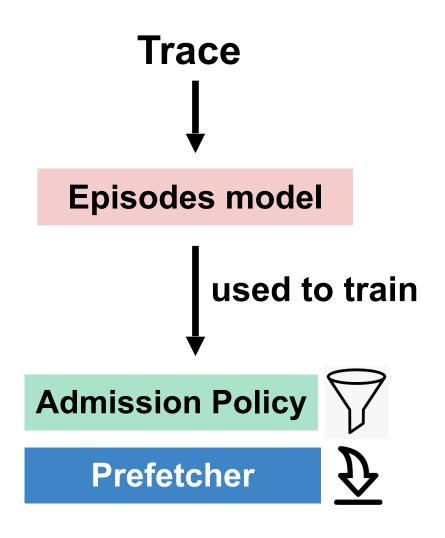
Why DT matters: example

- Same flash writes, same number of IOs saved
- Right saves more DT (and thus disk load)

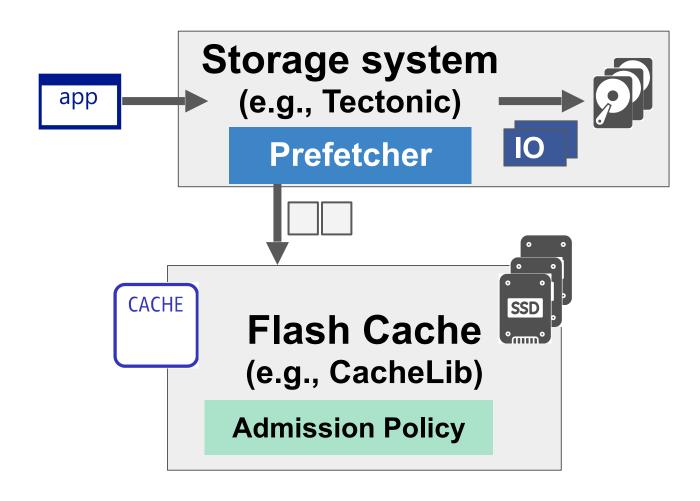


Overall Architecture

Training Time



Deployment Time



Online Baleen

- Keeping track of information needed to score episode
 - Admissions & evictions (to know boundaries)

$$Score(Ep) = \frac{\mathsf{DTSaved}(Ep)}{\mathsf{FlashWrites}(Ep)}$$

Determine score cut-off dynamically

 $Score(\textit{Ep}) > DynamicCutoff_{\mbox{TargetFlashWriteRate}}$

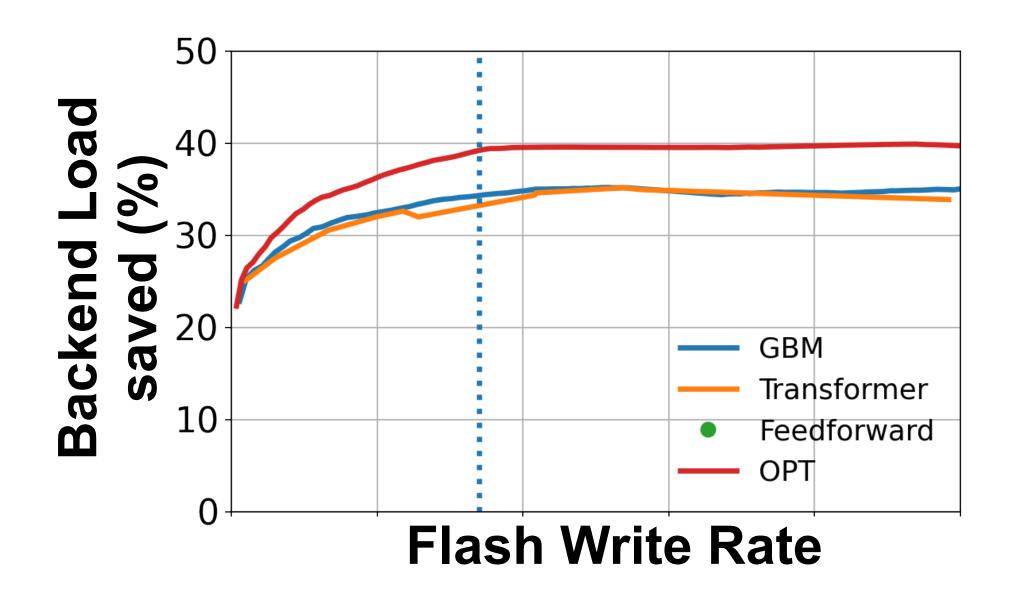
Why we use GBMs



Gradient-Boosting Machines (decision trees)

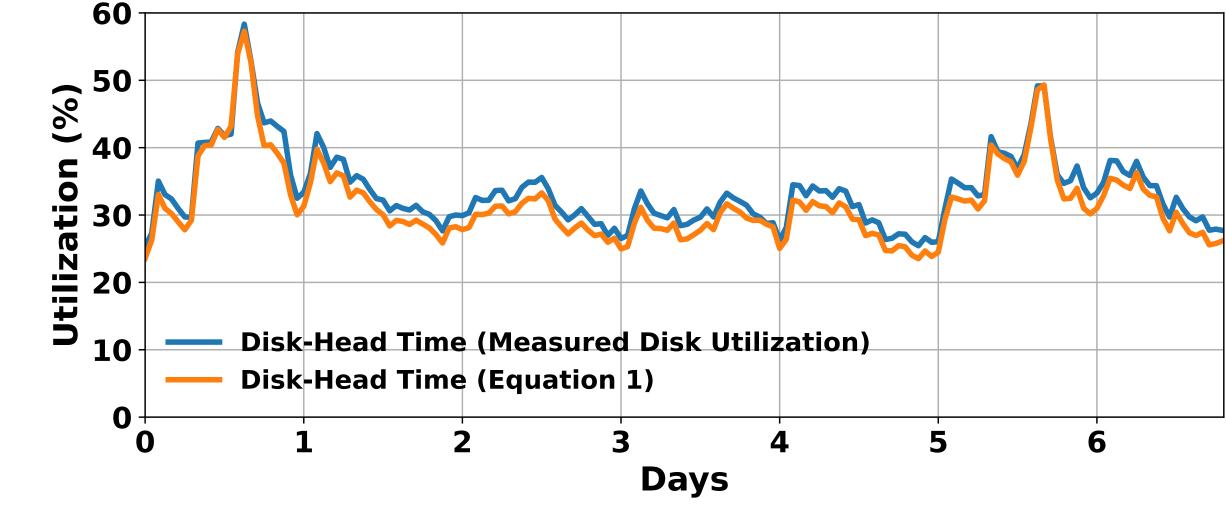
- Accuracy
 - On par with our attempt at a Cache Transformer
- Robustness
- Low inference overhead
 - <1% increase in overall CPU usage</p>

GBM performs as well as Transformer



Calculated DT matches measured DT

DT = Seek time x #IOs + Read time x #Bytes (Eq 1)

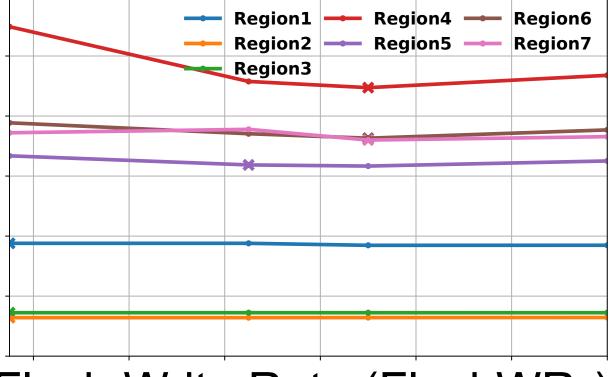


Baleen-TCO

Picks the optimal flash write rate to minimize 'TCO'

$$\mathbf{TCO_1} \propto \frac{\mathrm{PeakDT_1}}{\mathrm{PeakDT_0}} \cdot \# \mathrm{HDDs_0} + \frac{\mathrm{Cost_{SSD}}}{\mathrm{Cost_{HDD}}} \cdot \frac{\mathrm{FlashWR_1}}{\mathrm{FlashWR_0}} \cdot \# \mathrm{SSDs_0}$$

Peak Backend Load (PeakDT₁)



Flash Write Rate (FlashWR₁)